针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取...针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取CART、CHAID、SVM、RF作为对比算法,以准确率、加权查准率、加权查全率、加权F值作为分类模型评价指标,以均方根误差作为回归模型评价指标,采用10个分类数据集和7个回归数据集进行验证。实验结果表明CHAID-RF可行有效。展开更多
Full duplex radio increases the frequency efficiency but its performance is limited by the self-interference (SI). We first analyze the multiple noises in the full duplex radio system and model such noises as an α ...Full duplex radio increases the frequency efficiency but its performance is limited by the self-interference (SI). We first analyze the multiple noises in the full duplex radio system and model such noises as an α - stable distribution. Then we formulate a novel non-Gaussian SI problem. Under the maximum correntropy criterion (MCC), a robust digital non-linear self-interference cancellation algorithm is proposed for the SI channel estimation. A gradient descent based algorithm is derived to search the optimal solution. Simulation results show that the proposed algorithm can achieve a smaller estimation error and a higher pseudo signal to interference plus noise ratio (PSINR) than the well-known least mean square (LMS) algorithm and least square (LS) algorithm.展开更多
文摘针对卡方自动交互诊断(CHAID)决策树易过拟合的问题,提出CHAID随机森林方法(CHAID Random Forest,CHAID-RF)。该方法采用随机采样、随机选择特征以及集成的策略,将CHAID决策树作为基分类器,形成CHAID-RF。为了验证CHAID-RF的有效性,选取CART、CHAID、SVM、RF作为对比算法,以准确率、加权查准率、加权查全率、加权F值作为分类模型评价指标,以均方根误差作为回归模型评价指标,采用10个分类数据集和7个回归数据集进行验证。实验结果表明CHAID-RF可行有效。
基金supported by the National Natural Science Foundation of China under Grants 61372092"863" Program under Grants 2014AA01A701
文摘Full duplex radio increases the frequency efficiency but its performance is limited by the self-interference (SI). We first analyze the multiple noises in the full duplex radio system and model such noises as an α - stable distribution. Then we formulate a novel non-Gaussian SI problem. Under the maximum correntropy criterion (MCC), a robust digital non-linear self-interference cancellation algorithm is proposed for the SI channel estimation. A gradient descent based algorithm is derived to search the optimal solution. Simulation results show that the proposed algorithm can achieve a smaller estimation error and a higher pseudo signal to interference plus noise ratio (PSINR) than the well-known least mean square (LMS) algorithm and least square (LS) algorithm.