According to the theories of optimal noise match and optimal power match, a method for calculating the optimal source impedance of low noise amplifier (LNA) is proposed based on the input reflection coefficient S11....According to the theories of optimal noise match and optimal power match, a method for calculating the optimal source impedance of low noise amplifier (LNA) is proposed based on the input reflection coefficient S11. Moreover.with the help of Smith chart, the calculation process is detailed, and the trade-off between the lowest noise figure and the maximum power gain is obtained during the design of LNA input impedance matching network. Based on the Chart 0. 35-μm CMOS process, a traditional cascode LNA circuit is designed and manufactured. Simulation and experimental results have a good agreement with the theoretical analysis, thus proving the correctness of theoretical analysis and the feasibility of the method.展开更多
A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is dis...A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is discussed from the aspects of noise optimization,impedance match,and forward gain.At 2.05GHz,the measured S 11 is -6.4dB, S 21 is 11dB with 3dB-BW of 300MHz,and NF is about 5.3dB.It indicates that comprehensive consideration of parasitics,package model,and reasonable process is necessary for RF circuit design.展开更多
The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of freq...The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.展开更多
A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is im...A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is improved with an active biasing technique. The post-layout simulation shows an input referred 1-dB compression point (IPldn) of-11.52 dBm. Compared with the recent reported high gain LNAs, the proposed LNA has a much better linearity without degrading other performance. The LNA draws 10 mA current from a 3.3 V power supply.展开更多
The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band an...The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band and the channel bandwidth is up to 100 MHz. It operates in the time division duplex (TDD) mode and supports the multiple-input multipleoutput (MIMO) technique for the international mobile telecommunications (IMT)-advanced systems. The classical superheterodyne scheme is employed to achieve optimal performance. Design issues of the essential components such as low noise amplifier, power amplifier and local oscillators are described in detail. Measurement results show that the maximum linear output power of the RF transceiver is above 23 dBm, and the gain and noise figure of the low noise amplifier is around 24 dB and below 1 dB, respectively. Furthermore, the error vector magnitude (EVM) measurement shows that the performance of the developed RF transceiver is well beyond the requirements of the long term evolution (LTE)-advanced system. With up to 8 x 8 MIMO configuration, the RF transceiver supports more than a 1 Gbit/s data rate in field tests.展开更多
This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter ana...This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 μm 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver.展开更多
This paper presents a fully differential dual gain low noise amplifier(DGLNA) for low power 2.45-GHz ZigBee/IEEE 802.15.4 applications.The effect of input parasitics on the inductively degenerated cascode LNA is ana...This paper presents a fully differential dual gain low noise amplifier(DGLNA) for low power 2.45-GHz ZigBee/IEEE 802.15.4 applications.The effect of input parasitics on the inductively degenerated cascode LNA is analyzed.Circuit design details within the guidelines of the analysis are presented.The chip was implemented in SMIC 0.18-μm 1P6M RF/mixed signal CMOS process.The DGLNA achieves a maximum gain of 8 dB and a minimum gain of 1 dB with good input return loss.In high gain mode, the measured noise figure(NF) is 2.3-3 dB in the whole 2.45-GHz ISM band.The measured 1-dB compression point, IIP3 and IIP2 is-9, 1 and 33 dBm, respectively.The DGLNA consumes 2 mA of current from a 1.8 V power supply.展开更多
Electrostatic discharge (ESD) induced parasitic effects have serious impacts on performance of radio frequency (RF) integrated circuits (IC). This paper discusses a comprehensive noise analysis procedure for ESD...Electrostatic discharge (ESD) induced parasitic effects have serious impacts on performance of radio frequency (RF) integrated circuits (IC). This paper discusses a comprehensive noise analysis procedure for ESD protection structures and their negative influences on RF ICs. Noise figures (NFs) of commonly used ESD protection structures and their impacts on a single-chip 5.5 GHz low-noise amplifier (LNA) circuit were depicted. A design example in 0.18 μm SiGe BiCMOS was presented. Measurement results confirm that significant noise degradation occurs in the LNA circuit due to ESD-induced noise effects. A practical design procedure for ESD-protected RF ICs is provided for real-world RF IC optimization.展开更多
The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the ...The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the fundamental limitations of the narrowband SNIM technique for the broadband application, the authors present a broadband SNIM LNA systematic design technique. The designed LNA guided by the proposed methodology achieves 10 dB power gain with a low Noise Figure of 0.53 dB. Meanwhile, it provides wonderful input matching of 27 dB across the fre-quency range of 3~5 GHz. Therefore, broadband SNIM is realized.展开更多
This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier (LNA), current-reuse V-I converter, active double balanced mixer and transimpedance amplifier for short range device...This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier (LNA), current-reuse V-I converter, active double balanced mixer and transimpedance amplifier for short range device (SRD) applications. With the proposed current-reuse LNA, the DC consumption of the front-end reduces considerably while maintaining sufficient performance needed by SRD devices. The RF front-end was fabricated in 0.18μm RFCMOS process and occupies a silicon area of just 0.11 mm^2. Operating in 433 MHz band, the measurement results show the RF front-end achieves a conversion gain of 29.7 dB, a double side band noise figure of 9.7 dB, an input referenced third intercept point of -24.9 dBm with only 1.44 mA power consumption from 1.8 V supply. Compared to other reported front-ends, it has an advantage in power consumption.展开更多
A CMOS dual-band low noise amplifer (LNA) design is presented.The purpose of th is work is intended to substitute only one LNA for two individual LNA's in dual -band transceivers for applications such as wireless ...A CMOS dual-band low noise amplifer (LNA) design is presented.The purpose of th is work is intended to substitute only one LNA for two individual LNA's in dual -band transceivers for applications such as wireless local area network complying with both IEEE 802.11a and 802.11b/g.Dua l-band simultaneous input power and noise matching and load shaping are discuss ed.The chip is implemented in 0.25μm CMOS mixed and RF process.The measured pe rformance is summarized and discussed.展开更多
A CMOS low-noise amplifier (LNA) operating at 31.7 GHz with a low input return loss (S11) and high linearity is proposed. The wideband input matching was achieved by employing a simple LC compounded network to gen...A CMOS low-noise amplifier (LNA) operating at 31.7 GHz with a low input return loss (S11) and high linearity is proposed. The wideband input matching was achieved by employing a simple LC compounded network to generate more than one S11 dip below -10 dB level. The principle of the matching circuit is analyzed and the critical factors with significant effect on the input impedance (Zin) are determined. The relationship between the input impedance and the load configuration is explored in depth, which is seldom concentrated upon previously. In addition, the noise of the input stage is modeled using a cascading matrix instead of conventional noise theory. In this way Zin and the noise figure can be calculated using one uniform formula. The linearity analysis is also performed in this paper. Finally, an LNA was designed for demonstration purposes. The measurement results show that the proposed LNA achieves a maximum power gain of 9.7 dB and an input return loss of 〈 -10 dB from 29 GHz to an elevated frequency limited by the measuring range. The measured input-referred compression point and the third order inter-modulation point are -7.8 and 5.8 dBm, respectively. The LNA is fabricated in a 90-nm RF CMOS process and occupies an area of 755 × 670μm2 including pads. The whole circuit dissipates a DC power of 24 mW from one 1.3-V supply.展开更多
An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise- c...An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise- canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further am- plifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down- converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220×280 μm2.展开更多
基金Supported by the Nature Science Foundation for Key Program of Jiangsu Higher Education Institu-tions of China(09KJA510001)the Creative Talents Foundation of Nantong Universitythe Scientific ResearchFoundation of Nantong University(08B24,09ZW005)~~
文摘According to the theories of optimal noise match and optimal power match, a method for calculating the optimal source impedance of low noise amplifier (LNA) is proposed based on the input reflection coefficient S11. Moreover.with the help of Smith chart, the calculation process is detailed, and the trade-off between the lowest noise figure and the maximum power gain is obtained during the design of LNA input impedance matching network. Based on the Chart 0. 35-μm CMOS process, a traditional cascode LNA circuit is designed and manufactured. Simulation and experimental results have a good agreement with the theoretical analysis, thus proving the correctness of theoretical analysis and the feasibility of the method.
文摘A RF low noise amplifier,integrated in a single bluetooth transceiver chip and fabricated in 0.35μm digital CMOS technology,is presented.Under the consideration of ESD protection and package,design methodology is discussed from the aspects of noise optimization,impedance match,and forward gain.At 2.05GHz,the measured S 11 is -6.4dB, S 21 is 11dB with 3dB-BW of 300MHz,and NF is about 5.3dB.It indicates that comprehensive consideration of parasitics,package model,and reasonable process is necessary for RF circuit design.
文摘The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.
文摘A 1.34 GHz-1=60 MHz low noise amplifier (LNA) designed in a 0.35 pm SiGe process is presented. The designed LNA exhibits a power gain of 21.46 dB and a noise figure (NF) of 1.27 dB at 1.34 GHz. The linearity is improved with an active biasing technique. The post-layout simulation shows an input referred 1-dB compression point (IPldn) of-11.52 dBm. Compared with the recent reported high gain LNAs, the proposed LNA has a much better linearity without degrading other performance. The LNA draws 10 mA current from a 3.3 V power supply.
基金The National Natural Science Foundation of China (No.60702027,60921063)the National Basic Research Program of China(973 Program)(No.2010CB327400)the National Science and Technology Major Project of Ministry of Science and Technology of China(No.2010ZX03007-001-01,2011ZX03004-001)
文摘The development of a high performance wideband radio frequency (RF) transceiver used in the next generation mobile communication system is presented. The developed RF transceiver operates in the 6 to 6.3 GHz band and the channel bandwidth is up to 100 MHz. It operates in the time division duplex (TDD) mode and supports the multiple-input multipleoutput (MIMO) technique for the international mobile telecommunications (IMT)-advanced systems. The classical superheterodyne scheme is employed to achieve optimal performance. Design issues of the essential components such as low noise amplifier, power amplifier and local oscillators are described in detail. Measurement results show that the maximum linear output power of the RF transceiver is above 23 dBm, and the gain and noise figure of the low noise amplifier is around 24 dB and below 1 dB, respectively. Furthermore, the error vector magnitude (EVM) measurement shows that the performance of the developed RF transceiver is well beyond the requirements of the long term evolution (LTE)-advanced system. With up to 8 x 8 MIMO configuration, the RF transceiver supports more than a 1 Gbit/s data rate in field tests.
文摘提出了一种适用于射频—微机电系统(RF-MEMS)滤波器的高性能接口放大电路。利用微纳工艺制备了相对带宽为1.4%、中心频率为73.02 MHz的硅基MEMS滤波器,针对其高阻抗、高插入损耗特性,设计了基于运算放大器的低噪声、高增益的两级放大电路和阻抗匹配电路。仿真结果表明:接口电路对高频的MEMS滤波器微弱电流信号具有良好的放大效果,增益可达62.75d B,噪声系数为3.35d B,S22反射系数为-46.91 d B,使RF-MEMS滤波器的插入损耗降低至0.56 d B。测试与PCB板级电路级联的MEMS滤波器输出信号表明:RF-MEMS滤波器的插入损耗降至16.2d B,相对带宽为1.4%,中心频率为73.02 MHz,提升了MEMS滤波器在无线通信中的应用潜力。
文摘This paper presents a dual-band low noise amplifier for the receiver of a global navigation satellite system. The differences between single band and multi-band design methods are discussed. The relevant parameter analysis and the details of circuit design are presented. The test chip was implemented in a TSMC 0.18 μm 1P4M RF CMOS process. The LNA achieves a gain of 16.8 dB/18.9 dB on 1.27 GHz/1.575 GHz. The measured noise figure is around 1.5-1.7 dB on both bands. The LNA consumes less than 4.3 mA of current from a 1.8 V power supply. The measurement results show consistency with the design. And the LNA can fully satisfy the demands of the GNSS receiver.
基金supported by the Innovation Fund of Fudan University,Shanghai, China
文摘This paper presents a fully differential dual gain low noise amplifier(DGLNA) for low power 2.45-GHz ZigBee/IEEE 802.15.4 applications.The effect of input parasitics on the inductively degenerated cascode LNA is analyzed.Circuit design details within the guidelines of the analysis are presented.The chip was implemented in SMIC 0.18-μm 1P6M RF/mixed signal CMOS process.The DGLNA achieves a maximum gain of 8 dB and a minimum gain of 1 dB with good input return loss.In high gain mode, the measured noise figure(NF) is 2.3-3 dB in the whole 2.45-GHz ISM band.The measured 1-dB compression point, IIP3 and IIP2 is-9, 1 and 33 dBm, respectively.The DGLNA consumes 2 mA of current from a 1.8 V power supply.
文摘Electrostatic discharge (ESD) induced parasitic effects have serious impacts on performance of radio frequency (RF) integrated circuits (IC). This paper discusses a comprehensive noise analysis procedure for ESD protection structures and their negative influences on RF ICs. Noise figures (NFs) of commonly used ESD protection structures and their impacts on a single-chip 5.5 GHz low-noise amplifier (LNA) circuit were depicted. A design example in 0.18 μm SiGe BiCMOS was presented. Measurement results confirm that significant noise degradation occurs in the LNA circuit due to ESD-induced noise effects. A practical design procedure for ESD-protected RF ICs is provided for real-world RF IC optimization.
文摘The Simultaneous Noise and Input Voltage Standing Wave Ratio (VSWR) Matching (SNIM) condition for Low Noise Amplifier (LNA), in principle, can only be satisfied at a single fre-quency. In this paper, by analyzing the fundamental limitations of the narrowband SNIM technique for the broadband application, the authors present a broadband SNIM LNA systematic design technique. The designed LNA guided by the proposed methodology achieves 10 dB power gain with a low Noise Figure of 0.53 dB. Meanwhile, it provides wonderful input matching of 27 dB across the fre-quency range of 3~5 GHz. Therefore, broadband SNIM is realized.
文摘This paper presents a wideband RF front-end with novel current-reuse wide band low noise amplifier (LNA), current-reuse V-I converter, active double balanced mixer and transimpedance amplifier for short range device (SRD) applications. With the proposed current-reuse LNA, the DC consumption of the front-end reduces considerably while maintaining sufficient performance needed by SRD devices. The RF front-end was fabricated in 0.18μm RFCMOS process and occupies a silicon area of just 0.11 mm^2. Operating in 433 MHz band, the measurement results show the RF front-end achieves a conversion gain of 29.7 dB, a double side band noise figure of 9.7 dB, an input referenced third intercept point of -24.9 dBm with only 1.44 mA power consumption from 1.8 V supply. Compared to other reported front-ends, it has an advantage in power consumption.
文摘A CMOS dual-band low noise amplifer (LNA) design is presented.The purpose of th is work is intended to substitute only one LNA for two individual LNA's in dual -band transceivers for applications such as wireless local area network complying with both IEEE 802.11a and 802.11b/g.Dua l-band simultaneous input power and noise matching and load shaping are discuss ed.The chip is implemented in 0.25μm CMOS mixed and RF process.The measured pe rformance is summarized and discussed.
基金Project supported by the National Basic Research Program of China(No.2010CB327404)the National High Technology Research and Development Program of China(No.2011AA10305)the International Cooperation Projects in Science and Technology,China(No. 2011DFA11310)
文摘A CMOS low-noise amplifier (LNA) operating at 31.7 GHz with a low input return loss (S11) and high linearity is proposed. The wideband input matching was achieved by employing a simple LC compounded network to generate more than one S11 dip below -10 dB level. The principle of the matching circuit is analyzed and the critical factors with significant effect on the input impedance (Zin) are determined. The relationship between the input impedance and the load configuration is explored in depth, which is seldom concentrated upon previously. In addition, the noise of the input stage is modeled using a cascading matrix instead of conventional noise theory. In this way Zin and the noise figure can be calculated using one uniform formula. The linearity analysis is also performed in this paper. Finally, an LNA was designed for demonstration purposes. The measurement results show that the proposed LNA achieves a maximum power gain of 9.7 dB and an input return loss of 〈 -10 dB from 29 GHz to an elevated frequency limited by the measuring range. The measured input-referred compression point and the third order inter-modulation point are -7.8 and 5.8 dBm, respectively. The LNA is fabricated in a 90-nm RF CMOS process and occupies an area of 755 × 670μm2 including pads. The whole circuit dissipates a DC power of 24 mW from one 1.3-V supply.
文摘An inductorless multi-mode RF front end for a global navigation satellite system (GNSS) receiver is presented. Unlike the traditional topology of a low noise amplifier (LNA), the inductorless current-mode noise- canceling LNA is applied in this design. The high-impedance-input radio frequency amplifier (RFA) further am- plifies the GNSS signals and changes the single-end signal path into fully differential. The passive mixer down- converts the signals to the intermediate frequency (IF) band and conveys the signals to the analogue blocks. The local oscillator (LO) buffer divides the output frequency of the voltage controlled oscillator (VCO) and generates 25%-duty-cycle quadrature square waves to drive the mixer. Our measurement results display that the implemented RF front end achieves good overall performance while consuming only 6.7 mA from 1.2 V supply. The input return loss is better than -26 dB and the ultra low noise figure of 1.43 dB leads to high sensitivity of the GNSS receiver. The input 1 dB compression point is -43 dBm at the high gain of 48 dB. The designed circuit is fabricated in 55 nm CMOS technology and the die area, which is much smaller than traditional circuit, is around 220×280 μm2.