Hydrogenated microcrystalline silicon-germanium(μc-SiGe:H) films are fabricated by radio-frequency plasma-enhanced chemical vapor deposition(RF-PECVD).The optical absorption coefficient and the photosensitivity of t...Hydrogenated microcrystalline silicon-germanium(μc-SiGe:H) films are fabricated by radio-frequency plasma-enhanced chemical vapor deposition(RF-PECVD).The optical absorption coefficient and the photosensitivity of the μc-SiGe:H films increase dramatically by increasing the plasma power and deposition pressure simultaneously.Additionally,the microstructural properties of the μc-SiGe:H films are also studied.By combining Raman,Fourier transform infrared(FTIR) and X-ray fluoroscopy(XRF) measurements,it is shown that the Ge-bonding configuration and compactability of the μc-SiGe:H thin films play a crucial role in enhancing the optical absorption and optimizing the quality of the films via a significant reduction in the defect density.展开更多
基金supported by the National Basic Research Program of China(Nos.2011CBA00705,2011CBA00706 and 2011CBA00707)the National Natural Science Foundation of China(No.61377031)+1 种基金the Natural Science Foundation of Tianjin(No.12JCQNJC01000)the Fundamental Research Funds for the Central Universities
文摘Hydrogenated microcrystalline silicon-germanium(μc-SiGe:H) films are fabricated by radio-frequency plasma-enhanced chemical vapor deposition(RF-PECVD).The optical absorption coefficient and the photosensitivity of the μc-SiGe:H films increase dramatically by increasing the plasma power and deposition pressure simultaneously.Additionally,the microstructural properties of the μc-SiGe:H films are also studied.By combining Raman,Fourier transform infrared(FTIR) and X-ray fluoroscopy(XRF) measurements,it is shown that the Ge-bonding configuration and compactability of the μc-SiGe:H thin films play a crucial role in enhancing the optical absorption and optimizing the quality of the films via a significant reduction in the defect density.