A compact facility for cancer therapy has been designed and is presently under construction. A slow beam extraction system using the RF-Knock Out method and 3rd-order resonance is adopted in the synchrotron of this fa...A compact facility for cancer therapy has been designed and is presently under construction. A slow beam extraction system using the RF-Knock Out method and 3rd-order resonance is adopted in the synchrotron of this facility. Eight sextupoles are used, four of them are for correcting the chromaticity and the rest for driving the 3rd-order resonance. In order to save the aperture of vacuum chamber, a 3-magnet bump is adopted during the extraction process. The extraction phase space map and the last 3 turns’ particle trajectory before extraction are given. The matching betatron functions with HEBT (high energy beam transport) are also presented.展开更多
Using the China Spallation Neutron Source(CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotr...Using the China Spallation Neutron Source(CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H-beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss,an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.展开更多
基金Supported by State Key Development Program of Basic Research of China (2010CB834204)
文摘A compact facility for cancer therapy has been designed and is presently under construction. A slow beam extraction system using the RF-Knock Out method and 3rd-order resonance is adopted in the synchrotron of this facility. Eight sextupoles are used, four of them are for correcting the chromaticity and the rest for driving the 3rd-order resonance. In order to save the aperture of vacuum chamber, a 3-magnet bump is adopted during the extraction process. The extraction phase space map and the last 3 turns’ particle trajectory before extraction are given. The matching betatron functions with HEBT (high energy beam transport) are also presented.
文摘Using the China Spallation Neutron Source(CSNS) linac as the injector, a 500 MeV proton synchrotron is proposed for multidisciplinary applications, such as biology, material science and proton therapy. The synchrotron will deliver proton beam with energy from 80 MeV to 500 MeV. A compact lattice design has been worked out, and all the important beam dynamics issues have been investigated. The 80 MeV H-beam is stripped and injected into the synchrotron by using multi-turn injection. In order to continuously extraction the proton with small beam loss,an achromatic structure is proposed and a slow extraction method with RF knock-out is adopted and optimized.