The Shanghai Advanced Proton Therapy facility employs third-integer slow extraction. In order to achieve accurate treatment, high-quality spill is needed. Therefore,parameters that may affect slow extraction should be...The Shanghai Advanced Proton Therapy facility employs third-integer slow extraction. In order to achieve accurate treatment, high-quality spill is needed. Therefore,parameters that may affect slow extraction should be investigated by simulation. A computer model of the synchrotron operation slow extraction was constructed with MATLAB~. By simulating the motion of the circulating protons, we could quantify the influence of machine and initial beam parameters on properties of the extracted beam, such as ripple, uniformity, stability, on-and off-time of the spill and spill width in the synchrotron.Suitable design parameters including the horizontal tunes,power supply ripple, longitudinal RF cavity voltage, RFKO and the chromaticities were determined.展开更多
Tune ripple has a significant influence on beam spill ripple in RF-knockout(RF-KO)slow extraction.In this study,a model was proposed to explain how the tune ripple affects the beam spill in RF-KO slow extraction;conse...Tune ripple has a significant influence on beam spill ripple in RF-knockout(RF-KO)slow extraction.In this study,a model was proposed to explain how the tune ripple affects the beam spill in RF-KO slow extraction;consequently,a simulation was performed using the lattice of the Xi’an Proton Application Facility(XiPAF)synchrotron to verify the model.The simulation demonstrates that the tune ripple influences the beam spill in two ways.On the one hand,the tune ripple causes a direct fluctuation in the separatrix area,which induces beam spill ripple.On the other hand,the tune ripple influences the emittance growth rate in RF-knockout slow extraction.These two aspects simultaneously contribute to the beam spill ripple.展开更多
In conventional slowness-time coherence(STC)method,slowness and time need to be searched at the same time,which limits the precision and lowers the efficiency.The dichotomy method combined with slowness-time coherence...In conventional slowness-time coherence(STC)method,slowness and time need to be searched at the same time,which limits the precision and lowers the efficiency.The dichotomy method combined with slowness-time coherence algorithm aims to enhance the efficiency of data processing and to improve the precision.The algorithm changes the searching pattern of conventional slowness-time coherence method to acquire the slowness of component waves in array acoustic logging data.Based on energy ratio of short time window versus long time window and slowness-time coherence method,the algorithm first acquires the arrivals of the component waves using energy ratio of short time window versus long time window method.It then uses the calculated results as the arrivals in conventional slowness-time coherence method,so the slowness-time two-dimensional searching process is simplified to slowness searching process.Based on dichotomy method,the searching pattern is further optimized in replace of the ergodic searching pattern in conventional slowness-time coherence method,which means that as the iteration proceeds,the current searching interval is reduced to half of the former,so the number of searching times is decreased.The dichotomy method combined with slowness-time coherence algorithm is applied to well L in the data processing.Compared with conventional slowness-time coherence method,for compressional wave,the searching efficiency of the algorithm is 4.53 times better,while for Stoneley wave,the searching efficiency is 1.85 times better.Compared with conventional logging data,the average absolute error of the results of the dichotomy method combined with slowness-time coherence algorithm is 1.14μs/ft smaller than that of the conventional method,while the average relative error is 1.2 percent lower.The dichotomy method combined with slowness-time coherence algorithm shows good results in its application,which can enhance the processing efficiency remarkably while getting reliable results at the same time.展开更多
Guava leaf tea has been used as a folk medicine for treating hyperglycemic conditions in Asia and Africa. The hypoglycemic efficacy of guava leaf has been documented by many scientists in these regions, but the hypogl...Guava leaf tea has been used as a folk medicine for treating hyperglycemic conditions in Asia and Africa. The hypoglycemic efficacy of guava leaf has been documented by many scientists in these regions, but the hypoglycemic mechanism is poorly understood. Guava leaves were extracted with methanol and the crude extract was partitioned against hexane, ethyl acetate, and butanol in sequence. The leftover in water is defined as the aqueous partition. A second smaller batch was extracted with hot water directly. Oral glucose tolerance test was carried out on healthy mice instead of diabetic mice that lack endogenous insulin. Glucose uptake was examined with 3T3-L1 adipocytes. Oxidative effect on PTP1B (protein tyrosine phosphatase 1b) was carried out with real-time PTP1B enzymatic assay. The aqueous partition of guava leaf extract possesses a potent inhibitory effect on PTP1B enzymatic activity and this PTP1B inhibition is through a slow oxidative but reversible inactivation on the enzyme. The reversible inactivation would suggest guava leaf extract may augment PTP1B inhibition alongside the endogenous H2O2 which itself is induced by insulin. In addition, our study confirmed the hypoglycemic efficacy being associated with guava leaf and found the most effective molecules reside in the aqueous partition which is also less cytotoxic to Chinese hamster ovary cells when compared to other less polar partitions. The guava leaf extract can modulate insulin activity through a redox regulation on PP1B enzymatic activity. It is speculated that a compound similar to gallocatechin in the aqueous partition can reduce an oxygen molecule to hydrogen peroxide which in turn oxidizes the catalytic residue Cys in PTP1B. Therefore, the guava leaf tea can serve as a functional hypoglycemic drink that is suitable for either healthy or diabetic subjects.展开更多
Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Sha...Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Shanghai.The synchrotron,beam delivery system,and other technical systems were commissioned and reached their expected performances.After a clinical trial of 47 patients was finished,the proton therapy facility obtained a registration certificate from the National Medical Products Administration.The characteristics of the accelerator and treatment systems are described in this article.展开更多
Based on the optimized design of the lattice for therapy synchrotron and considering the requirement of radiation therapy, the third order resonant extraction is adopted. Using the momentum-amplitude selection method,...Based on the optimized design of the lattice for therapy synchrotron and considering the requirement of radiation therapy, the third order resonant extraction is adopted. Using the momentum-amplitude selection method, the extraction system is designed and optimized. An extraction efficiency of more than 97% and a momentum spread less than 0.11% are obtained.展开更多
A compact facility for cancer therapy has been designed and is presently under construction. A slow beam extraction system using the RF-Knock Out method and 3rd-order resonance is adopted in the synchrotron of this fa...A compact facility for cancer therapy has been designed and is presently under construction. A slow beam extraction system using the RF-Knock Out method and 3rd-order resonance is adopted in the synchrotron of this facility. Eight sextupoles are used, four of them are for correcting the chromaticity and the rest for driving the 3rd-order resonance. In order to save the aperture of vacuum chamber, a 3-magnet bump is adopted during the extraction process. The extraction phase space map and the last 3 turns’ particle trajectory before extraction are given. The matching betatron functions with HEBT (high energy beam transport) are also presented.展开更多
基金supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.20150210)
文摘The Shanghai Advanced Proton Therapy facility employs third-integer slow extraction. In order to achieve accurate treatment, high-quality spill is needed. Therefore,parameters that may affect slow extraction should be investigated by simulation. A computer model of the synchrotron operation slow extraction was constructed with MATLAB~. By simulating the motion of the circulating protons, we could quantify the influence of machine and initial beam parameters on properties of the extracted beam, such as ripple, uniformity, stability, on-and off-time of the spill and spill width in the synchrotron.Suitable design parameters including the horizontal tunes,power supply ripple, longitudinal RF cavity voltage, RFKO and the chromaticities were determined.
基金supported by the National Natural Science Foundation of China(No.12075131)。
文摘Tune ripple has a significant influence on beam spill ripple in RF-knockout(RF-KO)slow extraction.In this study,a model was proposed to explain how the tune ripple affects the beam spill in RF-KO slow extraction;consequently,a simulation was performed using the lattice of the Xi’an Proton Application Facility(XiPAF)synchrotron to verify the model.The simulation demonstrates that the tune ripple influences the beam spill in two ways.On the one hand,the tune ripple causes a direct fluctuation in the separatrix area,which induces beam spill ripple.On the other hand,the tune ripple influences the emittance growth rate in RF-knockout slow extraction.These two aspects simultaneously contribute to the beam spill ripple.
基金Supported by the National High Technology Research and Development of China(863 Programme)(No.2013AA092501)
文摘In conventional slowness-time coherence(STC)method,slowness and time need to be searched at the same time,which limits the precision and lowers the efficiency.The dichotomy method combined with slowness-time coherence algorithm aims to enhance the efficiency of data processing and to improve the precision.The algorithm changes the searching pattern of conventional slowness-time coherence method to acquire the slowness of component waves in array acoustic logging data.Based on energy ratio of short time window versus long time window and slowness-time coherence method,the algorithm first acquires the arrivals of the component waves using energy ratio of short time window versus long time window method.It then uses the calculated results as the arrivals in conventional slowness-time coherence method,so the slowness-time two-dimensional searching process is simplified to slowness searching process.Based on dichotomy method,the searching pattern is further optimized in replace of the ergodic searching pattern in conventional slowness-time coherence method,which means that as the iteration proceeds,the current searching interval is reduced to half of the former,so the number of searching times is decreased.The dichotomy method combined with slowness-time coherence algorithm is applied to well L in the data processing.Compared with conventional slowness-time coherence method,for compressional wave,the searching efficiency of the algorithm is 4.53 times better,while for Stoneley wave,the searching efficiency is 1.85 times better.Compared with conventional logging data,the average absolute error of the results of the dichotomy method combined with slowness-time coherence algorithm is 1.14μs/ft smaller than that of the conventional method,while the average relative error is 1.2 percent lower.The dichotomy method combined with slowness-time coherence algorithm shows good results in its application,which can enhance the processing efficiency remarkably while getting reliable results at the same time.
文摘Guava leaf tea has been used as a folk medicine for treating hyperglycemic conditions in Asia and Africa. The hypoglycemic efficacy of guava leaf has been documented by many scientists in these regions, but the hypoglycemic mechanism is poorly understood. Guava leaves were extracted with methanol and the crude extract was partitioned against hexane, ethyl acetate, and butanol in sequence. The leftover in water is defined as the aqueous partition. A second smaller batch was extracted with hot water directly. Oral glucose tolerance test was carried out on healthy mice instead of diabetic mice that lack endogenous insulin. Glucose uptake was examined with 3T3-L1 adipocytes. Oxidative effect on PTP1B (protein tyrosine phosphatase 1b) was carried out with real-time PTP1B enzymatic assay. The aqueous partition of guava leaf extract possesses a potent inhibitory effect on PTP1B enzymatic activity and this PTP1B inhibition is through a slow oxidative but reversible inactivation on the enzyme. The reversible inactivation would suggest guava leaf extract may augment PTP1B inhibition alongside the endogenous H2O2 which itself is induced by insulin. In addition, our study confirmed the hypoglycemic efficacy being associated with guava leaf and found the most effective molecules reside in the aqueous partition which is also less cytotoxic to Chinese hamster ovary cells when compared to other less polar partitions. The guava leaf extract can modulate insulin activity through a redox regulation on PP1B enzymatic activity. It is speculated that a compound similar to gallocatechin in the aqueous partition can reduce an oxygen molecule to hydrogen peroxide which in turn oxidizes the catalytic residue Cys in PTP1B. Therefore, the guava leaf tea can serve as a functional hypoglycemic drink that is suitable for either healthy or diabetic subjects.
文摘Because of its excellent dose distribution,proton therapy is becoming increasingly popular in the medical application of cancer treatment.A synchrotron-based proton therapy facility was designed and constructed in Shanghai.The synchrotron,beam delivery system,and other technical systems were commissioned and reached their expected performances.After a clinical trial of 47 patients was finished,the proton therapy facility obtained a registration certificate from the National Medical Products Administration.The characteristics of the accelerator and treatment systems are described in this article.
基金Supported by Key Equipment R & D Fund of CAS (0713040YZ0)
文摘Based on the optimized design of the lattice for therapy synchrotron and considering the requirement of radiation therapy, the third order resonant extraction is adopted. Using the momentum-amplitude selection method, the extraction system is designed and optimized. An extraction efficiency of more than 97% and a momentum spread less than 0.11% are obtained.
基金Supported by State Key Development Program of Basic Research of China (2010CB834204)
文摘A compact facility for cancer therapy has been designed and is presently under construction. A slow beam extraction system using the RF-Knock Out method and 3rd-order resonance is adopted in the synchrotron of this facility. Eight sextupoles are used, four of them are for correcting the chromaticity and the rest for driving the 3rd-order resonance. In order to save the aperture of vacuum chamber, a 3-magnet bump is adopted during the extraction process. The extraction phase space map and the last 3 turns’ particle trajectory before extraction are given. The matching betatron functions with HEBT (high energy beam transport) are also presented.