针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大...针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。展开更多
为了提高对管制物品的检测精度,本文提出一种结合RFB(receptive field block)网络结构和特征融合的目标检测算法。首先对采集的安检数据进行无效内容剔除、滤波;接着对安检数据进行人工标注和数据增强;然后在MobileNetV3-SSD算法的基础...为了提高对管制物品的检测精度,本文提出一种结合RFB(receptive field block)网络结构和特征融合的目标检测算法。首先对采集的安检数据进行无效内容剔除、滤波;接着对安检数据进行人工标注和数据增强;然后在MobileNetV3-SSD算法的基础上,通过引入RFB网络改进其网络结构,以加强网络的特征提取能力,并利用特征融合的方法提高模型的小目标检测能力;最后,构建了一个安检数据集SCCI2020来验证算法的性能,该数据集包含91767张图片。实验结果表明,本算法在安检数据集SCCI2020上的检测精度为87.0%,比MobileNetV3-SSD算法的检测精度高2.7个百分点;在COCO2014和COCO2017通用数据集上的检测精度分别为21.9%和23%,相对于VGG16-SSD、MobileNetV3-SSD算法均有一定提升。展开更多
文摘针对坐标注意力(CA)在水平和垂直方向特征的平均池化可能丢失目标显著特征,以及使用二维普通卷积对小目标特征学习不足的情况,提出了CARFB(coordinate attention and receptive field block)模块。该模块将CA的平均池化修改为平均+最大池化,以保留输入特征在水平和垂直方向的显著和细节信息;利用RFB具有不同大小感受野的优势,在水平和垂直方向分别使用RFB模块代替CA的融合特征统一卷积,以同时提取不同大小目标的特征;引入包含不同大小卷积核和步长的CBS模块,替换CA的二维普通卷积,进一步提取水平和垂直方向的特征,得到重新加权的输出特征。CARFB模块在水平和垂直方向保存目标位置信息,利用不同感受野提取不同大小目标的强辨别性特征,从而具有更强的特征学习能力。为了验证提出的即插即用模块CARFB的性能,将其嵌入ObjectBox目标检测框架,得到ObjectBox-CARFB模型;用CARFB模块替换RFBnet中的RFB模块,得到CARFBnet目标检测模型。MSCOCO数据集的实验测试表明,ObjectBox-CARFB模型的性能得到全面提升,尤其对小目标的检测性能提升突出;PASCALVOC和MSCOCO数据集的实验结果表明,CARFBnet300和CARFBnet512的目标检测能力分别优于原始RFBnet300和RFBnet512模型,并优于其他同系列对比模型。提出的CARFB模块具有更强的特征学习能力,对不同尺度目标均能取得较好的检测效果,特别是在小目标检测方面,效果提升显著。提出的CARFB模块可以嵌入到任何一个卷积神经网络,能保存更多的目标信息,具有更强的特征学习能力和更高的网络性能,对不同尺度目标均能取得较好的检测效果,尤其对小目标的检测效果提升显著。
文摘为了提高对管制物品的检测精度,本文提出一种结合RFB(receptive field block)网络结构和特征融合的目标检测算法。首先对采集的安检数据进行无效内容剔除、滤波;接着对安检数据进行人工标注和数据增强;然后在MobileNetV3-SSD算法的基础上,通过引入RFB网络改进其网络结构,以加强网络的特征提取能力,并利用特征融合的方法提高模型的小目标检测能力;最后,构建了一个安检数据集SCCI2020来验证算法的性能,该数据集包含91767张图片。实验结果表明,本算法在安检数据集SCCI2020上的检测精度为87.0%,比MobileNetV3-SSD算法的检测精度高2.7个百分点;在COCO2014和COCO2017通用数据集上的检测精度分别为21.9%和23%,相对于VGG16-SSD、MobileNetV3-SSD算法均有一定提升。