为了解决多任务级联卷积神经网络(MTCNN)算法网络模型在小人脸检测方面鲁棒性较低的问题,提出了一种基于感受野增强的网络模型。首先,为MTCNN算法模型中的R-Net网络和O-Net网络添加感受野模块(receptive field blocks,RFB-S)。其次,通...为了解决多任务级联卷积神经网络(MTCNN)算法网络模型在小人脸检测方面鲁棒性较低的问题,提出了一种基于感受野增强的网络模型。首先,为MTCNN算法模型中的R-Net网络和O-Net网络添加感受野模块(receptive field blocks,RFB-S)。其次,通过添加批量标准化和全局平均池化,加速网络模型的收敛,防止模型过拟合。最后,调整网络任务的权重,P-Net和R-Net网络用于人脸区域粗筛选,O-Net网络用于人脸区域精筛选以及人脸关键点回归。实验结果表明,与MTCNN算法网络模型相比,所提模型缩小了16%,但检测速度提升了9%,在FDDB数据集上的检测精度提高了2.3%。因此,基于感受野增强的网络模型能有效完成人脸的检测任务,增强对小人脸检测的鲁棒性,可为人脸识别、表情识别等提供技术支持。展开更多
文摘为了解决多任务级联卷积神经网络(MTCNN)算法网络模型在小人脸检测方面鲁棒性较低的问题,提出了一种基于感受野增强的网络模型。首先,为MTCNN算法模型中的R-Net网络和O-Net网络添加感受野模块(receptive field blocks,RFB-S)。其次,通过添加批量标准化和全局平均池化,加速网络模型的收敛,防止模型过拟合。最后,调整网络任务的权重,P-Net和R-Net网络用于人脸区域粗筛选,O-Net网络用于人脸区域精筛选以及人脸关键点回归。实验结果表明,与MTCNN算法网络模型相比,所提模型缩小了16%,但检测速度提升了9%,在FDDB数据集上的检测精度提高了2.3%。因此,基于感受野增强的网络模型能有效完成人脸的检测任务,增强对小人脸检测的鲁棒性,可为人脸识别、表情识别等提供技术支持。