本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一...本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。展开更多
This paper is concerned with the global existence of solutions for abstract retarded functional differential equations (RFDEs) with infinite delay, via a fixed point approach. Some sufficient conditions are establis...This paper is concerned with the global existence of solutions for abstract retarded functional differential equations (RFDEs) with infinite delay, via a fixed point approach. Some sufficient conditions are established under which the existence of a globally mild solution are obtained by using Leray-Schauder.展开更多
文摘本文将Dannan F M.和Elaydi S.[1,2]提出的常微分方程(ODE)的一致lipschitz稳定性概念拓广到滞后型泛函微分方程(RFDE),对一般线性RGDE,我们证明了一致lipschitz稳定与一致稳定是等价的;对一般非线性RFDE,利用liapunov泛函方法,建立了一致lipschitz稳定性必要或充分条件。
基金NNSF of China (No.10271044)NSF of Anhui Province (070416225,2003kj005zd)+1 种基金Talent Foundation of Anhui Province (05025104)Innovation Group of Anhui University
文摘This paper is concerned with the global existence of solutions for abstract retarded functional differential equations (RFDEs) with infinite delay, via a fixed point approach. Some sufficient conditions are established under which the existence of a globally mild solution are obtained by using Leray-Schauder.