This study presents a radio frequency(RF)fingerprint identification method combining a convolutional neural network(CNN)and gated recurrent unit(GRU)network to identify measurement and control signals.The proposed alg...This study presents a radio frequency(RF)fingerprint identification method combining a convolutional neural network(CNN)and gated recurrent unit(GRU)network to identify measurement and control signals.The proposed algorithm(CNN-GRU)uses a convolutional layer to extract the IQ-related learning timing features.A GRU network extracts timing features at a deeper level before outputting the final identification results.The number of parameters and the algorithm’s complexity are reduced by optimizing the convolutional layer structure and replacing multiple fully-connected layers with gated cyclic units.Simulation experiments show that the algorithm achieves an average identification accuracy of 84.74% at a -10 dB to 20 dB signal-to-noise ratio(SNR)with fewer parameters and less computation than a network model with the same identification rate in a software radio dataset containing multiple USRP X310s from the same manufacturer,with fewer parameters and less computation than a network model with the same identification rate.The algorithm is used to identify measurement and control signals and ensure the security of the measurement and control link with theoretical and engineering applications.展开更多
As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem su...As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem suggestions for solution according to the practical situation. (RFID) plays an important role in dairy information tracing and culture function extension of managing breeding technology, and finally put forward some展开更多
文章深入研究了基于射频识别(radio frequency identification,RFID)技术的消毒供应追溯系统的应用,探讨了RFID技术在医疗器械管理中的应用潜力和实际效果。文章详细分析了RFID技术在提高消毒供应追溯系统效率和准确性方面的优势,同时...文章深入研究了基于射频识别(radio frequency identification,RFID)技术的消毒供应追溯系统的应用,探讨了RFID技术在医疗器械管理中的应用潜力和实际效果。文章详细分析了RFID技术在提高消毒供应追溯系统效率和准确性方面的优势,同时指出了在实际应用过程中所面临的挑战和解决方案。通过本医院系统的应用和实施,展示了RFID技术在优化医疗资源管理、提升医疗服务质量以及保障患者安全方面的重要作用。展开更多
Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many f...Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many fields.In the RFID systems,data collision is inevitable when the reader sends a communication request and multiple tags respond with simultaneous data transmission.Data collision is prone to causing problems such as:identification delay,spectrum resource waste,a decreased system throughput rate,etc.Therefore,an efficient,stable anti-collision protocol is crucial for RFID systems.This research analysed the current research into RFID anticollision protocols and summarised means for its improvement through the mechanism of implementation of different types anticollision protocols.Finally,a new direction is proposed for the future development of RFID anti-collision protocol systems.展开更多
A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited rin...A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited ring modified from a traditional split-ring resonator(SRR)antenna and an inner SRR load,so the antenna can be regarded as a short-circuited ring loaded with SRR.According to the transmission line theory,to conjugate match with the capacitive input-impedance of a tag chip,the length of the short-circuited ring isλg/4 shorter than that of an open-circuited dipole of a traditional SRR antenna,whereλg is the wavelengh of the operating frequency.Hence,the size of the proposed antenna is more compact than that of the traditional SRR antenna.Thereafter,the proposed antenna is simulated and optimized by ANSYS high-frequency structure simulator(HFSS).The impedance,efficiency,and mutual coupling of the fabricated antenna are tested in a reverberation chamber(RC).The results show that the size of the presented antenna is 83%smaller than that of the traditional SRR antenna and the proposed antenna can cover the whole UHF RFID operating frequency band worldwide(840—960 MHz).The measured read range of the tag exhibits maximum values of 45 cm in free space and 37 cm under dense tag environment.展开更多
针对目前RFID(Radio Frequency Identification,射频识别技术)系统安全分析中忽略攻击事件对系统安全状态动态影响的问题,为了有效实现RFID系统的安全风险评估,文章提出了一种基于贝叶斯攻击图的RFID系统安全评估模型。该模型首先通过对...针对目前RFID(Radio Frequency Identification,射频识别技术)系统安全分析中忽略攻击事件对系统安全状态动态影响的问题,为了有效实现RFID系统的安全风险评估,文章提出了一种基于贝叶斯攻击图的RFID系统安全评估模型。该模型首先通过对RFID系统结构、所用协议进行分析确定系统的脆弱性漏洞及其依赖关系,建立攻击图。针对攻击图模型只能进行定性分析的问题,构建出相应的攻击图模型结构后可以结合贝叶斯理论对其进行量化。依据漏洞的利用难易度和影响程度建立RFID漏洞量化评价指标,计算出对应的原子攻击概率,然后以条件转移概率的形式将攻击节点与RFID系统的安全属性节点联系在一起,不仅能推断攻击者能够成功到达各个属性节点的风险概率,而且能够依据攻击者的不同行为动态展示系统风险状况的变化,实现评估不同状态下目标RFID系统的整体风险状况。实验表明,所提模型可以有效地计算出RFID系统整体的风险概率,为后续实施对应的安全策略提供理论依据。展开更多
When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-fr...When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.展开更多
基金supported by the National Natural Science Foundation of China(No.62027801).
文摘This study presents a radio frequency(RF)fingerprint identification method combining a convolutional neural network(CNN)and gated recurrent unit(GRU)network to identify measurement and control signals.The proposed algorithm(CNN-GRU)uses a convolutional layer to extract the IQ-related learning timing features.A GRU network extracts timing features at a deeper level before outputting the final identification results.The number of parameters and the algorithm’s complexity are reduced by optimizing the convolutional layer structure and replacing multiple fully-connected layers with gated cyclic units.Simulation experiments show that the algorithm achieves an average identification accuracy of 84.74% at a -10 dB to 20 dB signal-to-noise ratio(SNR)with fewer parameters and less computation than a network model with the same identification rate in a software radio dataset containing multiple USRP X310s from the same manufacturer,with fewer parameters and less computation than a network model with the same identification rate.The algorithm is used to identify measurement and control signals and ensure the security of the measurement and control link with theoretical and engineering applications.
基金Supported by the Project of the National "948" (2006-Z12)
文摘As a kind of brand-new technology, radio frequency identification management, data control and acquisition. This paper introduced food safety system construction, analyzed the advantages and problems in dairy modem suggestions for solution according to the practical situation. (RFID) plays an important role in dairy information tracing and culture function extension of managing breeding technology, and finally put forward some
文摘文章深入研究了基于射频识别(radio frequency identification,RFID)技术的消毒供应追溯系统的应用,探讨了RFID技术在医疗器械管理中的应用潜力和实际效果。文章详细分析了RFID技术在提高消毒供应追溯系统效率和准确性方面的优势,同时指出了在实际应用过程中所面临的挑战和解决方案。通过本医院系统的应用和实施,展示了RFID技术在优化医疗资源管理、提升医疗服务质量以及保障患者安全方面的重要作用。
基金The authors would like to thank the reviewers for their detailed reviews and constructive comments, which have helped improve the quality of this paper. This paper is supported by the National Natural Science Founda- tion of China (No. 61371092), the Doctoral Fund of Ministry of Education of China (No.20130061120062), and the China Postdoc- toral Science Foundation (No. 2014M551184).
文摘Radio frequency identification(RFID) is a new type of non-contact automatic identification technology.Due to its low energy consumption,low cost,and its adaptability to harsh environments,it has been applied to many fields.In the RFID systems,data collision is inevitable when the reader sends a communication request and multiple tags respond with simultaneous data transmission.Data collision is prone to causing problems such as:identification delay,spectrum resource waste,a decreased system throughput rate,etc.Therefore,an efficient,stable anti-collision protocol is crucial for RFID systems.This research analysed the current research into RFID anticollision protocols and summarised means for its improvement through the mechanism of implementation of different types anticollision protocols.Finally,a new direction is proposed for the future development of RFID anti-collision protocol systems.
文摘A compact antenna formed by three concentric split rings for ultra-high frequency(UHF)radio frequency identification(RFID)tag is proposed in this paper.The antenna is composed of two parts,an outer short-circuited ring modified from a traditional split-ring resonator(SRR)antenna and an inner SRR load,so the antenna can be regarded as a short-circuited ring loaded with SRR.According to the transmission line theory,to conjugate match with the capacitive input-impedance of a tag chip,the length of the short-circuited ring isλg/4 shorter than that of an open-circuited dipole of a traditional SRR antenna,whereλg is the wavelengh of the operating frequency.Hence,the size of the proposed antenna is more compact than that of the traditional SRR antenna.Thereafter,the proposed antenna is simulated and optimized by ANSYS high-frequency structure simulator(HFSS).The impedance,efficiency,and mutual coupling of the fabricated antenna are tested in a reverberation chamber(RC).The results show that the size of the presented antenna is 83%smaller than that of the traditional SRR antenna and the proposed antenna can cover the whole UHF RFID operating frequency band worldwide(840—960 MHz).The measured read range of the tag exhibits maximum values of 45 cm in free space and 37 cm under dense tag environment.
文摘针对目前RFID(Radio Frequency Identification,射频识别技术)系统安全分析中忽略攻击事件对系统安全状态动态影响的问题,为了有效实现RFID系统的安全风险评估,文章提出了一种基于贝叶斯攻击图的RFID系统安全评估模型。该模型首先通过对RFID系统结构、所用协议进行分析确定系统的脆弱性漏洞及其依赖关系,建立攻击图。针对攻击图模型只能进行定性分析的问题,构建出相应的攻击图模型结构后可以结合贝叶斯理论对其进行量化。依据漏洞的利用难易度和影响程度建立RFID漏洞量化评价指标,计算出对应的原子攻击概率,然后以条件转移概率的形式将攻击节点与RFID系统的安全属性节点联系在一起,不仅能推断攻击者能够成功到达各个属性节点的风险概率,而且能够依据攻击者的不同行为动态展示系统风险状况的变化,实现评估不同状态下目标RFID系统的整体风险状况。实验表明,所提模型可以有效地计算出RFID系统整体的风险概率,为后续实施对应的安全策略提供理论依据。
基金supported in part by National Natural Science Foundation of China(U22B2004,62371106)in part by the Joint Project of China Mobile Research Institute&X-NET(Project Number:2022H002)+6 种基金in part by the Pre-Research Project(31513070501)in part by National Key R&D Program(2018AAA0103203)in part by Guangdong Provincial Research and Development Plan in Key Areas(2019B010141001)in part by Sichuan Provincial Science and Technology Planning Program of China(2022YFG0230,2023YFG0040)in part by the Fundamental Enhancement Program Technology Area Fund(2021-JCJQ-JJ-0667)in part by the Joint Fund of ZF and Ministry of Education(8091B022126)in part by Innovation Ability Construction Project for Sichuan Provincial Engineering Research Center of Communication Technology for Intelligent IoT(2303-510109-04-03-318020).
文摘When the radio frequency identification(RFID)system inventories multiple tags,the recognition rate will be seriously affected due to collisions.Based on the existing dynamic frame slotted Aloha(DFSA)algorithm,a sub-frame observation and cyclic redundancy check(CRC)grouping combined dynamic framed slotted Aloha(SUBF-CGDFSA)algorithm is proposed.The algorithm combines the precise estimation method of the quantity of large-scale tags,the large-scale tags grouping mechanism based on CRC pseudo-randomcharacteristics,and the Aloha anti-collision optimization mechanism based on sub-frame observation.By grouping tags and sequentially identifying themwithin subframes,it accurately estimates the number of remaining tags and optimizes frame length accordingly to improve efficiency in large-scale RFID systems.Simulation outcomes demonstrate that this proposed algorithmcan effectively break through the system throughput bottleneck of 36.8%,which is up to 30%higher than the existing DFSA standard scheme,and has more significant advantages,which is suitable for application in largescale RFID tags scenarios.