In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of ...In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of getting the optimal slot-count parameter is studied and an optimal Q algorithm is proposed. The theoretical and simulation results show that the proposed algorithm can improve reading efficiency by 100% more than the conventional Q algorithm. Moreover,the proposed scheme changes little to the existing standard. Thus,it is easy to implement and compatible with ISO 18000-6C.展开更多
The technology of anti-collision is a key point in radio frequency identification (RFID) system. To avoid data collision, there are two approaches: ALOHA based algorithm and binary tree (BT) based algorithm. Howe...The technology of anti-collision is a key point in radio frequency identification (RFID) system. To avoid data collision, there are two approaches: ALOHA based algorithm and binary tree (BT) based algorithm. However, these cannot solve the collision problem completely, especially when the tag quantity is big and the tag ID is long. In this article, we present a multi-branch query tree (MBQT) protocol based on balanced incomplete block design (BIBD) code, and use 16-bit vectors derived from the BIBD as query prefix symbols of RFID reader. Compared with the conventional anti-collision algorithm, the theoretic analysis and simulation show that the proposed protocol improves the identification efficiency.展开更多
基金Supported by the National Natural Science Foundation of China(No.61340005)Beijing Natural Science Foundation(No.4132012)+2 种基金Beijing Education Committee Science and Technology Development Plan(No.KM201411232011)Beijing Outstanding Personnel Training Project(No.2013D005007000006)Scientific Research Improving Project-Intelligent Sense and Information Processing(No.5211524100)
文摘In this work,an optimal Q algorithm based on a collision recovery scheme is presented. Tags use BIBD-( 16,4,1) codes instead of RN16 s. Therefore,readers can make a valid recognition even in collision slots. A way of getting the optimal slot-count parameter is studied and an optimal Q algorithm is proposed. The theoretical and simulation results show that the proposed algorithm can improve reading efficiency by 100% more than the conventional Q algorithm. Moreover,the proposed scheme changes little to the existing standard. Thus,it is easy to implement and compatible with ISO 18000-6C.
文摘The technology of anti-collision is a key point in radio frequency identification (RFID) system. To avoid data collision, there are two approaches: ALOHA based algorithm and binary tree (BT) based algorithm. However, these cannot solve the collision problem completely, especially when the tag quantity is big and the tag ID is long. In this article, we present a multi-branch query tree (MBQT) protocol based on balanced incomplete block design (BIBD) code, and use 16-bit vectors derived from the BIBD as query prefix symbols of RFID reader. Compared with the conventional anti-collision algorithm, the theoretic analysis and simulation show that the proposed protocol improves the identification efficiency.