期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
基于多模态特征交互的RGB-D显著性目标检测 被引量:1
1
作者 高悦 戴蒙 张晴 《计算机工程与应用》 CSCD 北大核心 2024年第2期211-220,共10页
现有的大多数RGB-D显著性目标检测方法利用深度图来提高检测效果,而忽视了其质量的影响。低质量的深度图会对最终显著目标预测结果造成污染,影响显著性检测的性能。为了消除低质量深度图带来的干扰,并准确突出RGB图像中的显著目标,提出... 现有的大多数RGB-D显著性目标检测方法利用深度图来提高检测效果,而忽视了其质量的影响。低质量的深度图会对最终显著目标预测结果造成污染,影响显著性检测的性能。为了消除低质量深度图带来的干扰,并准确突出RGB图像中的显著目标,提出了一个用于多模态特征交互的RGB-D显著性目标检测模型。在编码阶段,设计了一个特征交互模块,其包含三个子模块:用于增强特征表述能力的全局特征采集子模块、用于过滤低质量深度信息的深度特征精炼子模块和用于实现特征融合的多模态特征交互子模块。在解码阶段,逐层融合经过特征交互后的多模态特征,实现多层次特征融合。通过在五个基准数据集上与十二种先进方法进行的综合实验表明,该模型在NLPR、SIP和NJU2K数据集上的指标上均优于其他对比方法,其中在NJU2K数据集上,该模型的性能比第二名在平均F值上提升了0.008,加权F值上提升了0.014,E-measure上提升了0.007,表现出了较好的检测效果。 展开更多
关键词 rgb-d显著性检测 多模态特征 特征交互 特征融合
下载PDF
基于跨模态特征融合的RGB-D显著性目标检测
2
作者 李可新 何丽 +1 位作者 刘哲凝 钟润豪 《国外电子测量技术》 2024年第6期59-67,共9页
RGB-D显著性目标检测因其有效性和易于捕捉深度线索而受到越来越多的关注。现有的工作通常侧重于通过各种融合策略学习共享表示,少有方法明确考虑如何维持RGB和深度的模态特征。提出了一种跨模态特征融合网络,该网络维持RGB-D显著目标... RGB-D显著性目标检测因其有效性和易于捕捉深度线索而受到越来越多的关注。现有的工作通常侧重于通过各种融合策略学习共享表示,少有方法明确考虑如何维持RGB和深度的模态特征。提出了一种跨模态特征融合网络,该网络维持RGB-D显著目标检测的RGB和深度的模态,通过探索共享信息以及RGB和深度模态的特性来提高显著检测性能。具体来说,采用RGB模态、深度模态网络和一个共享学习网络来生成RGB和深度模态显著性预测图以及共享显著性预测图。提出了一种跨模态特征融合模块,用于融合共享学习网络中的跨模态特征,然后将这些特征传播到下一层以整合跨层次信息。此外,提出了一种多模态特征聚合模块,将每个单独解码器的模态特定特征整合到共享解码器中,这可以提供丰富的互补多模态信息来提高显著性检测性能。最后,使用跳转连接来组合编码器和解码器层之间的分层特征。通过在4个基准数据集上与7种先进方法进行的实验表明,方法优于其他最先进的方法。 展开更多
关键词 rgb-d显著性目标检测 跨模态融合网络 跨模态特征融合 多模态聚合
下载PDF
基于互学习和促进分割的RGB-D显著性目标检测
3
作者 夏晨星 王晶晶 葛斌 《通化师范学院学报》 2024年第6期52-58,共7页
RGB-D显著性目标检测主要通过融合RGB图像和深度图(Depth)从给定场景中分割最显著的对象.由于受到原始深度图固有噪声的影响,会导致模型在检测过程中拟入错误的信息.为了改善检测效果,该文提出了一种基于互学习和促进分割的RGB-D显著性... RGB-D显著性目标检测主要通过融合RGB图像和深度图(Depth)从给定场景中分割最显著的对象.由于受到原始深度图固有噪声的影响,会导致模型在检测过程中拟入错误的信息.为了改善检测效果,该文提出了一种基于互学习和促进分割的RGB-D显著性目标检测模型,设计一个深度优化模块来获取深度图和预测深度图之间最优的深度信息;引入特征对齐模块和跨模态集成模块完成跨模态的融合;针对分割造成的精度损失问题,构建了一个基于多源特征集成机制的分离重构解码器.在5个公开数据集上进行了实验测试,实验结果表明:所提模型与其他模型相比,准确率更高,网络更加稳定. 展开更多
关键词 rgb-d显著性目标检测 互学习 特征对齐 跨模态集成
下载PDF
基于跨模态特征融合的RGB-D显著性目标检测 被引量:4
4
作者 陈正 赵晓丽 +3 位作者 张佳颖 尹明臣 叶翰辰 周浩军 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2021年第11期1688-1697,共10页
为了解决基于彩色图像的显著性检测在多目标或小目标等场景下无法准确检测出显著目标的问题,提出了一种基于RGB-D跨模态特征融合的显著性检测网络模型,该网络模型以改进的全卷积神经网络(FCN)为双流主干网络,分别提取彩色与深度特征并... 为了解决基于彩色图像的显著性检测在多目标或小目标等场景下无法准确检测出显著目标的问题,提出了一种基于RGB-D跨模态特征融合的显著性检测网络模型,该网络模型以改进的全卷积神经网络(FCN)为双流主干网络,分别提取彩色与深度特征并作出预测,最后利用Inception结构融合生成最终显著图.针对原FCN实际感受野远低于理论感受野,没有真正利用图像全局信息的问题,设计了双分支结构的全局与局部特征提取块,利用全局特征分支提取全局信息并指导局部特征提取,并以此构建了改进的FCN.此外,考虑到不同层级上彩色与深度特征之间的差异性,提出了跨模态特征融合模块,采用点积有选择性地融合彩色和深度特征,与加法和级联相比,采用点乘可以有效减少噪声与冗余信息.通过在3个公开基准数据集上与21种主流网络相比的综合实验表明,所提模型在S值、F值和MAE这3个指标上基本处于前3水平,同时对模型大小进行了比较,其大小仅为MMCI的4.7%,与现有最小模型A2dele相比减少了22.8%. 展开更多
关键词 rgb-d显著性目标检测 双分支特征 跨模态融合
下载PDF
基于多尺度特征融合的RGB-D显著性检测
5
作者 孔德冕 吴谨 《微电子学与计算机》 2021年第12期17-23,共7页
深度图的引入为RGB显著性检测提供了丰富的位置线索,但低质量的深度图会错误引导模型的特征拟合,并且由于真实世界的显著物体尺度变化较大,会使网络在预测过程中更加困难,误差变大.为了解决上述问题,本文设计了一种新的基于深度学习的RG... 深度图的引入为RGB显著性检测提供了丰富的位置线索,但低质量的深度图会错误引导模型的特征拟合,并且由于真实世界的显著物体尺度变化较大,会使网络在预测过程中更加困难,误差变大.为了解决上述问题,本文设计了一种新的基于深度学习的RGB-D显著性检测模型.本文利用VGG19作为主干网络分别提取RGB图和深度图两个模态的特征;然后利用串行的自适应融合模块对提取到的特征进行跨模态融合,使RGB图和深度图的优势互补,自动筛选深度特征;接着利用联合边缘检测的多尺度特征聚合模块将跨模态融合后的特征与边缘信息融合;最后通过全局引导模块对模型进行全局特征引导,得到预测结果.利用本文方法对4个公开数据集上的图像进行了预测。并与6种不同的方法进行对比,本文方法预测结果更接近人工标定的真值图.PR(Precision-Recal)曲线、S(S-measure)指标、F(F-measure)指标和MAE(Mean Absolute Error)指标显示,本文方法的整体性能较其中6种方法高. 展开更多
关键词 rgb-d显著性检测 深度学习 自适应融合 全局引导 多尺度
下载PDF
基于跨模态特征融合的RGB-D显著性目标检测 被引量:1
6
作者 侯倩伟 赵一洲 吴新淼 《长江信息通信》 2021年第6期5-9,17,共6页
显著性目标检测(SOD)作为目前计算机视觉以及计算机图形学领域中研究的基本课题之一,是许多其他复杂任务的预处理阶段的任务,对例如图像理解与解释、视觉追踪、语义分割,视频分析等对象级应用的发展起到了极大的推动作用。随着深度传感... 显著性目标检测(SOD)作为目前计算机视觉以及计算机图形学领域中研究的基本课题之一,是许多其他复杂任务的预处理阶段的任务,对例如图像理解与解释、视觉追踪、语义分割,视频分析等对象级应用的发展起到了极大的推动作用。随着深度传感器的普及,深度图像中蕴含的空间信息线索在显著性检测研究中提供了与RGB图像中蕴含的不同模态的辅助补充特征信息,这对于检测精度的提升来说愈发重要,因此如何有效地融合RGB与深度图像中的不同模态间的特征信息成为了RGB-D显著性目标检测课题中研究的重要问题。针对RGB与Depth模态间的特征融合问题,本文设计了一种基于跨模态特征信息融合的双流RGB-D显著目标检测网络模型,通过使用设计的跨模态特征融合模块去除某些低质量深度图带入的冗余与噪音,随后提取放大被优化改良过后的深度特征线索与RGB特征线索间的相似性与差异性,完成跨模态特征信息的有效融合。除此之外在网络编码结构的顶端增加了改良的非局部模块,通过自注意力机制更好地捕捉了的上下文信息以及像素间的长距离依赖。通过使用的两个数据集上的实验表明,这一模型在4个评价指标上取得了较好的表现。 展开更多
关键词 rgb-d显著性目标检测 特征融合 双流网络 注意力机制 深度监督
下载PDF
基于多层次特征细化融合的RGB-D显著性目标检测
7
作者 王静 李颖 宋甜 《现代计算机》 2021年第36期49-54,59,共7页
显著性目标检测(SOD)是计算机视觉中用于检测、分割和分类不同尺度物体的一个基本课题。在基于RGB-D的显著性目标检测中的一个主要问题是如何有效地融合多层次特征。针对RGB-D显著性目标检测的多层次特征融合问题,通过设计一种以深层次... 显著性目标检测(SOD)是计算机视觉中用于检测、分割和分类不同尺度物体的一个基本课题。在基于RGB-D的显著性目标检测中的一个主要问题是如何有效地融合多层次特征。针对RGB-D显著性目标检测的多层次特征融合问题,通过设计一种以深层次特征为主逐步细化融合的双流网络模型,来完整并细致地检测出显著目标,其中使用Depth图像提供补充信息,以提高网络在复杂场景中的性能。在常用的5个数据集上的实验结果表明,这一模型在完整细致地检测出显著目标方面有优越的性能。 展开更多
关键词 rgb-d显著性目标检测 多层次特征 区分语义
下载PDF
基于跨模态特征融合的RGB-D花椒图像显著性检测
8
作者 李节 孙成龙 +2 位作者 王逸涵 杨前 李柏林 《机械制造与自动化》 2024年第6期211-217,共7页
针对现有显著性检测模型无法有效地协同花椒枝干彩色图像和深度图像特征,建立基于注意力的RGB-D图像花椒枝干显著性检测模型。由两个单流卷积网络分别提取彩色和深度图像特征;设计基于空间和通道注意力机制的跨模态融合模块,用于融合多... 针对现有显著性检测模型无法有效地协同花椒枝干彩色图像和深度图像特征,建立基于注意力的RGB-D图像花椒枝干显著性检测模型。由两个单流卷积网络分别提取彩色和深度图像特征;设计基于空间和通道注意力机制的跨模态融合模块,用于融合多尺度的彩色流和深度流特征;研发多尺度监督机制,用于缓解由于采用最近邻域上采样的解码方式导致边缘预测不准确的问题。实验结果表明:该方法的平均精确度、平均召回率、综合评价指标和平均绝对误差均优于对比显著性目标检测方法。 展开更多
关键词 花椒自动化采摘 图像处理 rgb-d显著性目标检测 跨模态融合 注意力机制 多尺寸监督
下载PDF
基于多模态特征融合监督的RGB-D图像显著性检测 被引量:16
9
作者 刘政怡 段群涛 +1 位作者 石松 赵鹏 《电子与信息学报》 EI CSCD 北大核心 2020年第4期997-1004,共8页
RGB-D图像显著性检测是在一组成对的RGB和Depth图中识别出视觉上最显著突出的目标区域。已有的双流网络,同等对待多模态的RGB和Depth图像数据,在提取特征方面几乎一致。然而,低层的Depth特征存在较大噪声,不能很好地表征图像特征。因此... RGB-D图像显著性检测是在一组成对的RGB和Depth图中识别出视觉上最显著突出的目标区域。已有的双流网络,同等对待多模态的RGB和Depth图像数据,在提取特征方面几乎一致。然而,低层的Depth特征存在较大噪声,不能很好地表征图像特征。因此,该文提出一种多模态特征融合监督的RGB-D图像显著性检测网络,通过两个独立流分别学习RGB和Depth数据,使用双流侧边监督模块分别获取网络各层基于RGB和Depth特征的显著图,然后采用多模态特征融合模块来融合后3层RGB和Depth高维信息生成高层显著预测结果。网络从第1层至第5层逐步生成RGB和Depth各模态特征,然后从第5层到第3层,利用高层指导低层的方式产生多模态融合特征,接着从第2层到第1层,利用第3层产生的融合特征去逐步地优化前两层的RGB特征,最终输出既包含RGB低层信息又融合RGB-D高层多模态信息的显著图。在3个公开数据集上的实验表明,该文所提网络因为使用了双流侧边监督模块和多模态特征融合模块,其性能优于目前主流的RGB-D显著性检测模型,具有较强的鲁棒性。 展开更多
关键词 rgb-d显著性检测 卷积神经网络 多模态 监督
下载PDF
多分支主干监督网络下的RGB-D图像显著性检测 被引量:2
10
作者 王卫兵 张晓琢 邓强 《哈尔滨理工大学学报》 CAS 北大核心 2022年第4期39-45,共7页
针对现有的RGB-D图像显著性检测技术难以充分挖掘深度图像的有效信息,无法使RGB特征和深度特征有效融合的问题,提出了一种多分支主干监督网络下的RGB-D图像显著性检测方法。基于Resnet50网络获得两种图像的各层特征,利用深度改进模块从... 针对现有的RGB-D图像显著性检测技术难以充分挖掘深度图像的有效信息,无法使RGB特征和深度特征有效融合的问题,提出了一种多分支主干监督网络下的RGB-D图像显著性检测方法。基于Resnet50网络获得两种图像的各层特征,利用深度改进模块从通道和空间注意力的角度提取到有用的深度特征信息。利用特征分组监督融合模块,依据卷积神经网络的理论,对RGB和深度特征从高层到底层分组进行多尺度多模态特征融合,每组融合加入上层融合结果和真值图进行监督,最终迭代得到预测显著图。通过4个具有代表性数据集上进行的实验,对比目前先进的RGB-D图像显著性检测,表明此模型平均绝对误差指标最小,在F值、E值和S值指标上均有提高,性能优于其他模型,具有良好的鲁棒性。 展开更多
关键词 rgb-d图像显著检测 多分支主干监督网络 神经网络 注意力机制 多模态融合
下载PDF
小样本条件下的RGB-D显著性物体检测 被引量:1
11
作者 何静 傅可人 《中国图象图形学报》 CSCD 北大核心 2022年第10期2860-2872,共13页
目的现有基于RGB-D(RGB-depth)的显著性物体检测方法往往通过全监督方式在一个较小的RGB-D训练集上进行训练,因此其泛化性能受到较大的局限。受小样本学习方法的启发,本文将RGB-D显著性物体检测视为小样本问题,利用模型解空间优化和训... 目的现有基于RGB-D(RGB-depth)的显著性物体检测方法往往通过全监督方式在一个较小的RGB-D训练集上进行训练,因此其泛化性能受到较大的局限。受小样本学习方法的启发,本文将RGB-D显著性物体检测视为小样本问题,利用模型解空间优化和训练样本扩充两类小样本学习方法,探究并解决小样本条件下的RGB-D显著性物体检测。方法模型解空间优化通过对RGB和RGB-D显著性物体检测这两种任务进行多任务学习,并采用模型参数共享的方式约束模型的解空间,从而将额外的RGB显著性物体检测任务学习到的知识迁移至RGB-D显著性物体检测任务中。另外,训练样本扩充通过深度估计算法从额外的RGB数据生成相应的深度图,并将RGB图像和所生成的深度图用于RGB-D显著性物体检测任务的训练。结果在9个数据集上的对比实验表明,引入小样本学习方法能有效提升RGB-D显著性物体检测的性能。此外,对不同小样本学习方法在不同的RGB-D显著性物体检测模型下(包括典型的中期融合模型和后期融合模型)进行了对比研究,并进行相关分析与讨论。结论本文尝试将小样本学习方法用于RGB-D显著性物体检测,探究并利用两种不同小样本学习方法迁移额外的RGB图像知识,通过大量实验验证了引入小样本学习来提升RGB-D显著性物体检测性能的可行性和有效性,对后续将小样本学习引入其他多模态检测任务也提供了一定的启示。 展开更多
关键词 多模态检测 rgb-d显著性检测 小样本学习 多任务学习 深度估计
原文传递
基于提取双选紧密特征的RGB-D显著性检测网络
12
作者 化春键 邹新童 +2 位作者 蒋毅 俞建峰 陈莹 《光电子.激光》 CAS CSCD 北大核心 2023年第10期1026-1035,共10页
针对现有算法对不同来源特征之间的交互选择关注度欠缺以及对跨模态特征提取不充分的问题,提出了一种基于提取双选紧密特征的RGB-D显著性检测网络。首先,为了筛选出能够同时增强RGB图像显著区域和深度图像显著区域的特征,引入双向选择模... 针对现有算法对不同来源特征之间的交互选择关注度欠缺以及对跨模态特征提取不充分的问题,提出了一种基于提取双选紧密特征的RGB-D显著性检测网络。首先,为了筛选出能够同时增强RGB图像显著区域和深度图像显著区域的特征,引入双向选择模块(bi-directional selection module,BSM);为了解决跨模态特征提取不充分,导致算法计算冗余且精度低的问题,引入紧密提取模块(dense extraction module,DEM);最后,通过特征聚合模块(feature aggregation module,FAM)对密集特征进行级联融合,并将循环残差优化模块(recurrent residual refinement aggregation module,RAM)配合深度监督实现粗显著图的持续优化,最终得到精确的显著图。在4个广泛使用的数据集上进行的综合实验表明,本文提出的算法在4个关键指标方面优于7种现有方法。 展开更多
关键词 图像处理 rgb-d显著性检测 跨模态特征 循环残差
原文传递
背景与前景融合的RGB-D图像显著性检测 被引量:4
13
作者 赵强 王爱平 刘政怡 《计算机科学与探索》 CSCD 北大核心 2020年第7期1232-1242,共11页
RGB-D图像显著性检测是指在传统的2D图像中附加深度信息从而提取显著对象,但是现有的显著性检测模型,大多数只关注显著物体本身,却忽略了背景信息。因此,提出了一个新颖的显著性检测模型,将深度信息同时考虑到背景和前景中提取出显著区... RGB-D图像显著性检测是指在传统的2D图像中附加深度信息从而提取显著对象,但是现有的显著性检测模型,大多数只关注显著物体本身,却忽略了背景信息。因此,提出了一个新颖的显著性检测模型,将深度信息同时考虑到背景和前景中提取出显著区域。首先,通过图像边界信息的背景测量机制来去除前景噪声并从边界超像素中选择背景种子,从而计算出基于背景的显著图;其次,将输入的图像构造成图,并将深度信息引入到图形结构中,利用颜色、深度、位置等线索获取前景种子,从而计算出基于前景的显著图;最后,将背景图和前景图融合获得初始显著图,再加以元胞优化,迭代传播后得到最终的显著图。在三个RGB-D图像显著性检测数据集LFSD、NJU-400、NJU-2000上进行对比实验,实验结果表明,该方法具备有效性,同时也提高了检测准确率。 展开更多
关键词 rgb-d图像显著检测 前景和背景 显著图像融合 迭代传播
下载PDF
融合多视角信息的RGB-D图像协同显著性检测
14
作者 吴乾绅 《信息技术与网络安全》 2018年第7期58-61,66,共5页
图像协同显著性检测旨在检测一组内容相关的图像中的共同的显著目标。尽管在视觉特征学习以及检测算法等方面已有大量研究工作,但是大多数协同显著性研究集中于RGB图像,并没有充分利用图像深度等显著信息。考虑到上述不足以及采用单一... 图像协同显著性检测旨在检测一组内容相关的图像中的共同的显著目标。尽管在视觉特征学习以及检测算法等方面已有大量研究工作,但是大多数协同显著性研究集中于RGB图像,并没有充分利用图像深度等显著信息。考虑到上述不足以及采用单一图模型可能在检测过程中丢失重要信息,提出了一种基于多视角信息融合的RGB-D图像协同显著性检测算法。该方法首先针对单幅图像采用深度学习网络获得高质量的显著图,接着采用基于多图的流行排序算法融合图像的多种特征初步检测到协同显著区域,然后进一步利用深度信息进行显著增强,最后采用秩约束算法进行显著信息融合。在标准数据集上的实验结果证明了该方法的优异性能。 展开更多
关键词 rgb-d协同显著 多图 深度信息 深度学习 流行排序 秩约束
下载PDF
基于场景几何信息的显著性目标检测方法综述 被引量:2
15
作者 吴岚虎 李智玮 +2 位作者 刘垒烨 朴永日 卢湖川 《模式识别与人工智能》 EI CSCD 北大核心 2023年第2期120-142,共23页
显著性目标检测在图像和视频压缩、伪装物体检测、医学图像分割等领域具有重要作用.随着深度传感器和光场技术的广泛应用,深度图像和光场数据等场景几何信息开始应用于显著性目标检测,可提升模型在复杂场景下的性能,由此学者们提出一系... 显著性目标检测在图像和视频压缩、伪装物体检测、医学图像分割等领域具有重要作用.随着深度传感器和光场技术的广泛应用,深度图像和光场数据等场景几何信息开始应用于显著性目标检测,可提升模型在复杂场景下的性能,由此学者们提出一系列基于场景几何信息的显著性目标检测方法.文中旨在分析总结经典的基于场景几何信息的显著性目标检测方法.首先,介绍方法的基本框架及评估标准.然后,围绕多模态特征融合、多模态信息优化、网络模型轻量化三方面,分类概述和分析经典的RGB-D显著性目标检测方法和光场显著性目标检测方法.同时,详细介绍基于场景几何信息的显著性目标检测方法的工作进展.最后,讨论方法目前存在的问题,展望未来的研究方向. 展开更多
关键词 显著目标检测 场景几何信息 rgb-d显著性目标检测 光场显著目标检测
下载PDF
基于深度学习的显著性目标检测综述 被引量:5
16
作者 孙涵 刘译善 林昱涵 《数据采集与处理》 CSCD 北大核心 2023年第1期21-50,共30页
显著性目标检测通过模仿人的视觉感知系统,寻找最吸引视觉注意的目标,已被广泛应用于图像理解、语义分割、目标跟踪等计算机视觉任务中。随着深度学习技术的快速发展,显著性目标检测研究取得了巨大突破。本文总结了近5年相关工作,全面... 显著性目标检测通过模仿人的视觉感知系统,寻找最吸引视觉注意的目标,已被广泛应用于图像理解、语义分割、目标跟踪等计算机视觉任务中。随着深度学习技术的快速发展,显著性目标检测研究取得了巨大突破。本文总结了近5年相关工作,全面回顾了3类不同模态的显著性目标检测任务,包括基于RGB图像、基于RGB-D/T(Depth/Thermal)图像以及基于光场图像的显著性目标检测。首先分析了3类研究分支的任务特点,并概述了研究难点;然后就各分支的研究技术路线和优缺点进行阐述和分析,并简单介绍了3类研究分支常用的数据集和主流的评价指标。最后,对基于深度学习的显著性目标检测领域未来研究方向进行了探讨。 展开更多
关键词 深度学习 RGB图像显著目标检测 rgb-d/T图像显著目标检测 光场图像显著目标检测
下载PDF
基于深度质量感知和分层特征引导的RGB⁃D显著性检测
17
作者 宋梦柯 郑元超 陈程立诏 《计算机工程》 CAS CSCD 北大核心 2023年第5期255-261,268,共8页
现有基于融合的RGB-D显著性物体检测方法在对跨模态特征进行融合时忽视了RGB和深度图两模态特征的差异性,跨模态特征融合不均衡的问题使得模型不能充分利用跨模态互补特征,而低质量深度图也会对模型性能带来损害。提出一种基于深度质量... 现有基于融合的RGB-D显著性物体检测方法在对跨模态特征进行融合时忽视了RGB和深度图两模态特征的差异性,跨模态特征融合不均衡的问题使得模型不能充分利用跨模态互补特征,而低质量深度图也会对模型性能带来损害。提出一种基于深度质量感知和分层特征引导的RGB-D显著性物体检测算法。算法分为两个阶段:深度质量感知阶段和分层特征引导阶段。在第一阶段,利用深度质量感知从现有的主流RGB-D显著性物体检测训练数据集中挖掘高质量深度图,对训练集进行增强,提升低质量深度图的质量,减少噪声数据对模型性能的损害;在第二阶段,利用特征引导网络对RGB图和深度图进行分层自适应权重动态融合,在有效增加融合效率的同时增强跨模态融合的感知能力。在基准数据集NJUD、NLPR、SSD、STEREO和SIP上的实验结果表明,相比于SSF、CDNet、D3Net、DASNet等方法,该算法能够大幅提升深度图质量,其中在NLPR数据集上F-Measure值为0.934,MAE仅为0.020,综合性能优于其他相关SOTA方法,证明了先挖掘高质量深度图再进行跨模态自适应动态融合算法的有效性。 展开更多
关键词 深度质量感知 特征引导 跨模态融合 分层融合 rgb-d显著性检测
下载PDF
超像素条件随机场下的RGB-D视频显著性检测 被引量:3
18
作者 李贝 杨铀 刘琼 《中国图象图形学报》 CSCD 北大核心 2021年第4期872-882,共11页
目的视觉显著性在众多视觉驱动的应用中具有重要作用,这些应用领域出现了从2维视觉到3维视觉的转换,从而基于RGB-D数据的显著性模型引起了广泛关注。与2维图像的显著性不同,RGB-D显著性包含了许多不同模态的线索。多模态线索之间存在互... 目的视觉显著性在众多视觉驱动的应用中具有重要作用,这些应用领域出现了从2维视觉到3维视觉的转换,从而基于RGB-D数据的显著性模型引起了广泛关注。与2维图像的显著性不同,RGB-D显著性包含了许多不同模态的线索。多模态线索之间存在互补和竞争关系,如何有效地利用和融合这些线索仍是一个挑战。传统的融合模型很难充分利用多模态线索之间的优势,因此研究了RGB-D显著性形成过程中多模态线索融合的问题。方法提出了一种基于超像素下条件随机场的RGB-D显著性检测模型。提取不同模态的显著性线索,包括平面线索、深度线索和运动线索等。以超像素为单位建立条件随机场模型,联合多模态线索的影响和图像邻域显著值平滑约束,设计了一个全局能量函数作为模型的优化目标,刻画了多模态线索之间的相互作用机制。其中,多模态线索在能量函数中的权重因子由卷积神经网络学习得到。结果实验在两个公开的RGB-D视频显著性数据集上与6种显著性检测方法进行了比较,所提模型在所有相关数据集和评价指标上都优于当前最先进的模型。相比于第2高的指标,所提模型的AUC(area under curve),sAUC(shuffled AUC),SIM(similarity),PCC(Pearson correlation coefficient)和NSS(normalized scanpath saliency)指标在IRCCy N数据集上分别提升了2.3%,2.3%,18.9%,21.6%和56.2%;在DML-iTrack-3D数据集上分别提升了2.0%,1.4%,29.1%,10.6%,23.3%。此外还进行了模型内部的比较,验证了所提融合方法优于其他传统融合方法。结论本文提出的RGB-D显著性检测模型中的条件随机场和卷积神经网络充分利用了不同模态线索的优势,将它们有效融合,提升了显著性检测模型的性能,能在视觉驱动的应用领域发挥一定作用。 展开更多
关键词 rgb-d显著性 显著融合 条件随机场(CRF) 全局能量函数 卷积神经网络(CNN)
原文传递
基于协同注意力的RGB-D图像显著性检测
19
作者 焦瑛霞 张林 朱荣 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2023年第1期88-96,共9页
在RGB-D显著性检测视觉任务中,RGB彩色模态和深度模态的信息均被视为十分重要的特征线索。但现有的RGB-D显著性检测模型无法高效执行多尺度特征的交互和多模态特征的融合,因此在真实的开放场景下表现欠佳。针对上述问题,提出了一种基于... 在RGB-D显著性检测视觉任务中,RGB彩色模态和深度模态的信息均被视为十分重要的特征线索。但现有的RGB-D显著性检测模型无法高效执行多尺度特征的交互和多模态特征的融合,因此在真实的开放场景下表现欠佳。针对上述问题,提出了一种基于协同注意力(synergistic attention)机制的RGB-D显著性检测算法模型(SANet),并引入多模态学习中通用的引导与教导策略(guidance and teaching strategy)。在编码器进行多尺度特征提取的阶段中进行隐式引导(implicit guidance),在解码器进行特征融合时进行显式的教导(explicit teaching),实现了编码、解码的分阶段学习。在4个显著性检测评测数据集上进行的综合实验表明,该算法在4个评测指标上均优于已有的18个前沿RGB-D显著性检测模型。 展开更多
关键词 视觉认知机制 协同注意力机制 显著检测 rgb-d显著性检测
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部