视觉同时定位与地图构建(Simultaneous localization and mapping,SLAM)过程中,动态物体引入的干扰信息会严重影响定位精度。通过剔除动态对象,修复空洞区域解决动态场景下的SLAM问题。采用Mask-RCNN获取语义信息,结合对极几何方法对动...视觉同时定位与地图构建(Simultaneous localization and mapping,SLAM)过程中,动态物体引入的干扰信息会严重影响定位精度。通过剔除动态对象,修复空洞区域解决动态场景下的SLAM问题。采用Mask-RCNN获取语义信息,结合对极几何方法对动态对象进行剔除。使用关键帧像素加权映射的方式对RGB和深度图空洞区域进行逐像素恢复。依据深度图相邻像素相关性使用区域生长算法完善深度信息。在TUM数据集上的实验结果表明,位姿估计精度较ORB-SLAM2平均提高85.26%,较DynaSLAM提高28.54%,在实际场景中进行测试依旧表现良好。展开更多
基于表观的视线估计方法主要是在二维的三原色(red green blue,RGB)图像上进行,当头部在自由运动时视线估计精度较低,且目前基于卷积神经网络的表观视线估计都普遍使用池化来增大特征图中像素点的感受野,导致了特征图的信息损失,提出一...基于表观的视线估计方法主要是在二维的三原色(red green blue,RGB)图像上进行,当头部在自由运动时视线估计精度较低,且目前基于卷积神经网络的表观视线估计都普遍使用池化来增大特征图中像素点的感受野,导致了特征图的信息损失,提出一种基于膨胀卷积神经网络的多模态融合视线估计模型。在该模型中,利用膨胀卷积设计了一种叫GENet(gaze estimation network)的网络提取眼睛的RGB和深度图像的特征图,并利用卷积神经网络的全连接层自动融合头部姿态和2种图像的特征图,从而进行视线估计。实验部分在公开数据集Eyediap上验证了设计的模型,并将设计的模型同其他视线估计模型进行比较。实验结果表明,提出的视线估计模型可以在自由的头部运动下准确地估计视线方向。展开更多
针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出...针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。展开更多
针对传统人数统计方法因遮挡、光照变化导致准确率低的问题,提出一种适用于深度图的模拟降水分水岭算法(Depth map based Rainfalling Watershed Segmentation,D-RWS)。修复深度图并用混合高斯背景建模提取前景。利用D-RWS算法分割深度...针对传统人数统计方法因遮挡、光照变化导致准确率低的问题,提出一种适用于深度图的模拟降水分水岭算法(Depth map based Rainfalling Watershed Segmentation,D-RWS)。修复深度图并用混合高斯背景建模提取前景。利用D-RWS算法分割深度图中感兴趣的行人头部区域(Region Of Interest,ROI)。采用质心欧式距离最短法关联各帧中同一目标并跟踪计数。实验结果表明:提出的方法准确率能够达到98%以上,平均每帧处理时间为25 ms(40 f/s),准确率和实时性可满足实际应用的要求。展开更多
文摘视觉同时定位与地图构建(Simultaneous localization and mapping,SLAM)过程中,动态物体引入的干扰信息会严重影响定位精度。通过剔除动态对象,修复空洞区域解决动态场景下的SLAM问题。采用Mask-RCNN获取语义信息,结合对极几何方法对动态对象进行剔除。使用关键帧像素加权映射的方式对RGB和深度图空洞区域进行逐像素恢复。依据深度图相邻像素相关性使用区域生长算法完善深度信息。在TUM数据集上的实验结果表明,位姿估计精度较ORB-SLAM2平均提高85.26%,较DynaSLAM提高28.54%,在实际场景中进行测试依旧表现良好。
文摘基于表观的视线估计方法主要是在二维的三原色(red green blue,RGB)图像上进行,当头部在自由运动时视线估计精度较低,且目前基于卷积神经网络的表观视线估计都普遍使用池化来增大特征图中像素点的感受野,导致了特征图的信息损失,提出一种基于膨胀卷积神经网络的多模态融合视线估计模型。在该模型中,利用膨胀卷积设计了一种叫GENet(gaze estimation network)的网络提取眼睛的RGB和深度图像的特征图,并利用卷积神经网络的全连接层自动融合头部姿态和2种图像的特征图,从而进行视线估计。实验部分在公开数据集Eyediap上验证了设计的模型,并将设计的模型同其他视线估计模型进行比较。实验结果表明,提出的视线估计模型可以在自由的头部运动下准确地估计视线方向。
文摘针对视觉SLAM(Simultaneous Localization and Mapping)在真实场景下出现动态物体(如行人,车辆、动物)等影响算法定位和建图精确性的问题,基于ORB-SLAM3(Oriented FAST and Rotated BRIEF-Simultaneous Localization and Mapping 3)提出了YOLOv3-ORB-SLAM3算法。该算法在ORB-SLAM3的基础上增加了语义线程,采用动态和静态场景特征提取双线程机制:语义线程使用YOLOv3对场景中动态物体进行语义识别目标检测,同时对提取的动态区域特征点进行离群点剔除;跟踪线程通过ORB特征提取场景区域特征,结合语义信息获得静态场景特征送入后端,从而消除动态场景对系统的干扰,提升视觉SLAM算法定位精度。利用TUM(Technical University of Munich)数据集验证,结果表明YOLOv3-ORB-SLAM3算法在单目模式下动态序列相比ORB-SLAM3算法ATE(Average Treatment Effect)指标下降30%左右,RGB-D(Red,Green and Blue-Depth)模式下动态序列ATE指标下降10%,静态序列未有明显下降。
文摘针对传统人数统计方法因遮挡、光照变化导致准确率低的问题,提出一种适用于深度图的模拟降水分水岭算法(Depth map based Rainfalling Watershed Segmentation,D-RWS)。修复深度图并用混合高斯背景建模提取前景。利用D-RWS算法分割深度图中感兴趣的行人头部区域(Region Of Interest,ROI)。采用质心欧式距离最短法关联各帧中同一目标并跟踪计数。实验结果表明:提出的方法准确率能够达到98%以上,平均每帧处理时间为25 ms(40 f/s),准确率和实时性可满足实际应用的要求。