期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
5
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RGBD的实时头部姿态估计
被引量:
8
1
作者
陈国军
杨静
+1 位作者
程琰
尹鹏
《图学学报》
CSCD
北大核心
2019年第4期681-688,共8页
实时的头部姿态估计在人机交互和人脸分析应用中起着至关重要的作用,但准确的头部姿态估计方法依然具有一定的挑战性。为了提高头部姿态估计的准确性和鲁棒性,将基于几何的方法与基于学习的方法相结合进行头部姿态估计。在人脸检测和人...
实时的头部姿态估计在人机交互和人脸分析应用中起着至关重要的作用,但准确的头部姿态估计方法依然具有一定的挑战性。为了提高头部姿态估计的准确性和鲁棒性,将基于几何的方法与基于学习的方法相结合进行头部姿态估计。在人脸检测和人脸对齐的基础上,提取彩色图像几何特征和深度图像的局部区域深度特征,再结合深度块的法线和曲率特征,构成特征向量组;然后使用随机森林的方法进行训练;最后,所有决策树进行投票,对得到的头部姿态高斯分布估计进行阈值过滤,进一步提高模型预测的准确度。实验结果表明,该方法与现有的头部姿态估计方法相比,具有更高的准确度及鲁棒性。
展开更多
关键词
头部姿态估计
随机森林
rgbd数据
几何特征
深度特征
下载PDF
职称材料
基于K-means聚类的RGBD点云去噪和精简算法
被引量:
30
2
作者
苏本跃
马金宇
+1 位作者
彭玉升
盛敏
《系统仿真学报》
CAS
CSCD
北大核心
2016年第10期2329-2334,2341,共7页
针对Kinect等深度相机扫描获取的点云数据数量庞大、噪声较多的问题,提出一种特征保持的点云去噪和精简算法。使用K-D树快速分类点云;通过曲率估计算法得到局部曲面的曲率值;使用K-means聚类算法对点云进行聚类,对每个类中的点,根据点...
针对Kinect等深度相机扫描获取的点云数据数量庞大、噪声较多的问题,提出一种特征保持的点云去噪和精简算法。使用K-D树快速分类点云;通过曲率估计算法得到局部曲面的曲率值;使用K-means聚类算法对点云进行聚类,对每个类中的点,根据点到聚类中心的欧式距离和邻近点曲率变化判断是否为噪声点;通过保持特征的点云精简算法实现对点云数据的简化。实验结果显示,算法快速有效,对于去除大量外部噪声有良好效果,且精简后的点云数据保持了原始点云特征。
展开更多
关键词
K—means聚类
点云去噪
点云精简
rgbd数据
下载PDF
职称材料
基于非参数化采样的单幅图像深度估计
被引量:
5
3
作者
朱尧
喻秋
《计算机应用研究》
CSCD
北大核心
2017年第6期1876-1880,共5页
针对传统单幅图像深度估计线索不足及深度估计精度不准的问题,提出一种基于非参数化采样的单幅图像深度估计方法。该方法利用非参数化的学习手段,将现有RGBD数据集中的深度信息迁移到输入图像中去。首先计算输入图像和现有RGBD数据集多...
针对传统单幅图像深度估计线索不足及深度估计精度不准的问题,提出一种基于非参数化采样的单幅图像深度估计方法。该方法利用非参数化的学习手段,将现有RGBD数据集中的深度信息迁移到输入图像中去。首先计算输入图像和现有RGBD数据集多尺度的高层次图像特征;然后在现有RGBD数据集中,基于高层次的图像特征通过KNN最近邻搜索找到若干与输入图像特征最匹配的候选图像,并将这些候选图像通过SIFT流形变到输入图像进行对齐;最后对候选深度图进行插值和平滑等优化操作,便可以得到最后的深度图。实验结果表明,与现有算法相比,该方法估计得到的深度图精度更高,对输入图像的整体结构保持得更好。
展开更多
关键词
单幅图像
深度估计
非参数化采样
rgbd数据
集
下载PDF
职称材料
面向RGBD深度数据的快速点云配准方法
被引量:
5
4
作者
苏本跃
马金宇
+2 位作者
彭玉升
盛敏
马祖长
《中国图象图形学报》
CSCD
北大核心
2017年第5期643-655,共13页
目的真实物体的3维重建一直是计算机图形学、机器视觉等领域的研究热点。针对基于RGBD数据的非匀速非固定角度旋转物体的3维重建问题,提出一种利用旋转平台重建物体3维模型的配准方法。方法首先通过Kinect采集位于旋转平台上目标物的深...
目的真实物体的3维重建一直是计算机图形学、机器视觉等领域的研究热点。针对基于RGBD数据的非匀速非固定角度旋转物体的3维重建问题,提出一种利用旋转平台重建物体3维模型的配准方法。方法首先通过Kinect采集位于旋转平台上目标物的深度数据和颜色数据,对齐融合并使用包围盒算法去除背景噪声和不需要的外部点云,获得带有颜色信息的点云数据。并使用基于标定物不同角度上的点云数据标定出旋转平台中心轴的位置,从而获得Kinect与旋转平台之间的相对关系;然后通过曲率特征对目标点云进行特征点提取并寻找与相邻点云的对应点;其中对于特征点的选取,首先针对点云中的任意一点利用kd-tree搜寻其k个邻近点,对这些点进行曲面拟合,进而计算其高斯曲率,将高斯曲率绝对值较大的n个点作为点云的特征点。n的取值由点云的点个数、点密度和复杂度决定,具体表现为能反映物体的大致轮廓或表面特征信息即可。对于对应点的选取,考虑到欧氏距离并不能较好反映点云中的点对在旋转过程中的对应关系,在实际配准中,往往会因为点云重叠或距离过远等原因找到大量错误的对应点。由于目标物在扫描过程中仅绕旋转轴进行旋转,因此采用圆弧最小距离寻找对应点可有效减少错误点对。随后,使用二分迭代寻找绕中心轴的最优旋转角度以满足点云间的匹配误差最小;最后,将任意角度获取的点云数据配准到统一的坐标系下并重建模型。结果使用斯坦福大学点云数据库和自采集数据库分别对该方法和已有方法在算法效率和配准结果上进行对比实验,实验结果显示在拥有平均75 000个采样点的斯坦福大学点云数据库上与传统ICP算法和改进ICP算法相比,迭代次数分别平均减少86.5%、57.5%,算法运行时间分别平均减少87%、60.75%,欧氏距离误差平方和分别平均减少70%、22%;在具有平均57000个采样点的自采集点云数据库上与传统ICP算法和改进ICP算法相比,迭代次数分别平均减少94%、75%,算法运行时间分别平均减少92%、69%,欧氏距离误差平方和分别平均减少61.5%、30.6%;实验结果显示使用该方法进行点云配准效率较高且配准误差更小;和Kinect Fusion算法相比在纹理细节保留上也表现出较好的效果。结论本文提出的基于旋转平台标定的点云配准算法,利用二分迭代算法能够有效降低算法复杂度。与典型ICP和改进的ICP算法的对比实验也表明了本文算法的有效性。另外,与其他方法在具有纹理的点云配准对比实验中也验证了本文配准方法的优越性。该方法仅采用单个Kinect即可实现对非匀速非固定角度旋转物体的3维建模,方便实用,适用于简单快速的3维重建应用场合。
展开更多
关键词
rgbd数据
3维扫描
点云配准
Kineet
深度
数据
原文传递
自适应平衡因子的混合特征提取算法
5
作者
盛敏
彭玉升
+1 位作者
苏本跃
韩韦
《安庆师范大学学报(自然科学版)》
2017年第3期53-55,共3页
特征提取是3D点云配准中的重要步骤。针对RGBD点云数据独有的颜色信息,提出一种自适应平衡因子的混合特征提取算法。首先,引入几何特征度、颜色特征度和混合特征度的概念,混合特征度由几何特征度、颜色特征度和平衡因子决定。然后提出...
特征提取是3D点云配准中的重要步骤。针对RGBD点云数据独有的颜色信息,提出一种自适应平衡因子的混合特征提取算法。首先,引入几何特征度、颜色特征度和混合特征度的概念,混合特征度由几何特征度、颜色特征度和平衡因子决定。然后提出一种自适应的平衡因子估计方法,针对不同模型的几何特性和颜色特性自适应估算平衡因子,计算混合特征度,并根据混合特征度选择特征点集,最后采用改进的6DICP算法进行配准。实验结果显示,该算法提高了RGBD点云数据的配准精度、减少了算法耗时。
展开更多
关键词
特征提取
混合特征度
自适应平衡因子
rgbd
点云
数据
差
下载PDF
职称材料
题名
基于RGBD的实时头部姿态估计
被引量:
8
1
作者
陈国军
杨静
程琰
尹鹏
机构
中国石油大学(华东)计算机与通信工程学院
出处
《图学学报》
CSCD
北大核心
2019年第4期681-688,共8页
基金
国家“863”计划主题项目子课题(2015AA016403)
虚拟现实技术与系统国家重点实验室(北京航空航天大学)开放基金(BUAA-VR-15KF-13)
文摘
实时的头部姿态估计在人机交互和人脸分析应用中起着至关重要的作用,但准确的头部姿态估计方法依然具有一定的挑战性。为了提高头部姿态估计的准确性和鲁棒性,将基于几何的方法与基于学习的方法相结合进行头部姿态估计。在人脸检测和人脸对齐的基础上,提取彩色图像几何特征和深度图像的局部区域深度特征,再结合深度块的法线和曲率特征,构成特征向量组;然后使用随机森林的方法进行训练;最后,所有决策树进行投票,对得到的头部姿态高斯分布估计进行阈值过滤,进一步提高模型预测的准确度。实验结果表明,该方法与现有的头部姿态估计方法相比,具有更高的准确度及鲁棒性。
关键词
头部姿态估计
随机森林
rgbd数据
几何特征
深度特征
Keywords
head pose estimation
random forest
rgbd
data
geometric feature
depth feature
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于K-means聚类的RGBD点云去噪和精简算法
被引量:
30
2
作者
苏本跃
马金宇
彭玉升
盛敏
机构
安庆师范大学计算机与信息学院
安徽省智能感知与计算重点实验室
安庆师范大学数学与计算科学学院
出处
《系统仿真学报》
CAS
CSCD
北大核心
2016年第10期2329-2334,2341,共7页
基金
国家自然科学基金(11471093)
安徽省教育厅自然科学研究项目(KJ2014A142)
安徽省重点实验室开放课题(ACAIM160102)
文摘
针对Kinect等深度相机扫描获取的点云数据数量庞大、噪声较多的问题,提出一种特征保持的点云去噪和精简算法。使用K-D树快速分类点云;通过曲率估计算法得到局部曲面的曲率值;使用K-means聚类算法对点云进行聚类,对每个类中的点,根据点到聚类中心的欧式距离和邻近点曲率变化判断是否为噪声点;通过保持特征的点云精简算法实现对点云数据的简化。实验结果显示,算法快速有效,对于去除大量外部噪声有良好效果,且精简后的点云数据保持了原始点云特征。
关键词
K—means聚类
点云去噪
点云精简
rgbd数据
Keywords
K-means clustering
point cloud denoising
point cloud simplification
rgbd
data
分类号
TP391.9 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
基于非参数化采样的单幅图像深度估计
被引量:
5
3
作者
朱尧
喻秋
机构
武汉大学计算机学院
出处
《计算机应用研究》
CSCD
北大核心
2017年第6期1876-1880,共5页
基金
国家自然科学基金资助项目(61300125)
文摘
针对传统单幅图像深度估计线索不足及深度估计精度不准的问题,提出一种基于非参数化采样的单幅图像深度估计方法。该方法利用非参数化的学习手段,将现有RGBD数据集中的深度信息迁移到输入图像中去。首先计算输入图像和现有RGBD数据集多尺度的高层次图像特征;然后在现有RGBD数据集中,基于高层次的图像特征通过KNN最近邻搜索找到若干与输入图像特征最匹配的候选图像,并将这些候选图像通过SIFT流形变到输入图像进行对齐;最后对候选深度图进行插值和平滑等优化操作,便可以得到最后的深度图。实验结果表明,与现有算法相比,该方法估计得到的深度图精度更高,对输入图像的整体结构保持得更好。
关键词
单幅图像
深度估计
非参数化采样
rgbd数据
集
Keywords
single image
depth estimation
non-parameirie sampling
rgbd
datasets
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
面向RGBD深度数据的快速点云配准方法
被引量:
5
4
作者
苏本跃
马金宇
彭玉升
盛敏
马祖长
机构
安庆师范大学计算机与信息学院
安徽省智能感知与计算重点实验室
安庆师范大学数学与计算科学学院
中国科学院合肥智能机械研究所
出处
《中国图象图形学报》
CSCD
北大核心
2017年第5期643-655,共13页
基金
国家自然科学基金项目(11471093)
安徽省教育厅自然科学研究项目(KJ2014A142)
情感计算与先进智能机器安徽省重点实验室开放课题(ACAIM160102)~~
文摘
目的真实物体的3维重建一直是计算机图形学、机器视觉等领域的研究热点。针对基于RGBD数据的非匀速非固定角度旋转物体的3维重建问题,提出一种利用旋转平台重建物体3维模型的配准方法。方法首先通过Kinect采集位于旋转平台上目标物的深度数据和颜色数据,对齐融合并使用包围盒算法去除背景噪声和不需要的外部点云,获得带有颜色信息的点云数据。并使用基于标定物不同角度上的点云数据标定出旋转平台中心轴的位置,从而获得Kinect与旋转平台之间的相对关系;然后通过曲率特征对目标点云进行特征点提取并寻找与相邻点云的对应点;其中对于特征点的选取,首先针对点云中的任意一点利用kd-tree搜寻其k个邻近点,对这些点进行曲面拟合,进而计算其高斯曲率,将高斯曲率绝对值较大的n个点作为点云的特征点。n的取值由点云的点个数、点密度和复杂度决定,具体表现为能反映物体的大致轮廓或表面特征信息即可。对于对应点的选取,考虑到欧氏距离并不能较好反映点云中的点对在旋转过程中的对应关系,在实际配准中,往往会因为点云重叠或距离过远等原因找到大量错误的对应点。由于目标物在扫描过程中仅绕旋转轴进行旋转,因此采用圆弧最小距离寻找对应点可有效减少错误点对。随后,使用二分迭代寻找绕中心轴的最优旋转角度以满足点云间的匹配误差最小;最后,将任意角度获取的点云数据配准到统一的坐标系下并重建模型。结果使用斯坦福大学点云数据库和自采集数据库分别对该方法和已有方法在算法效率和配准结果上进行对比实验,实验结果显示在拥有平均75 000个采样点的斯坦福大学点云数据库上与传统ICP算法和改进ICP算法相比,迭代次数分别平均减少86.5%、57.5%,算法运行时间分别平均减少87%、60.75%,欧氏距离误差平方和分别平均减少70%、22%;在具有平均57000个采样点的自采集点云数据库上与传统ICP算法和改进ICP算法相比,迭代次数分别平均减少94%、75%,算法运行时间分别平均减少92%、69%,欧氏距离误差平方和分别平均减少61.5%、30.6%;实验结果显示使用该方法进行点云配准效率较高且配准误差更小;和Kinect Fusion算法相比在纹理细节保留上也表现出较好的效果。结论本文提出的基于旋转平台标定的点云配准算法,利用二分迭代算法能够有效降低算法复杂度。与典型ICP和改进的ICP算法的对比实验也表明了本文算法的有效性。另外,与其他方法在具有纹理的点云配准对比实验中也验证了本文配准方法的优越性。该方法仅采用单个Kinect即可实现对非匀速非固定角度旋转物体的3维建模,方便实用,适用于简单快速的3维重建应用场合。
关键词
rgbd数据
3维扫描
点云配准
Kineet
深度
数据
Keywords
rgbd
data
3D scanning
point cloud registration
Kinect
depth data
分类号
TP391 [自动化与计算机技术—计算机应用技术]
原文传递
题名
自适应平衡因子的混合特征提取算法
5
作者
盛敏
彭玉升
苏本跃
韩韦
机构
安庆师范大学数学与计算科学学院
安庆师范大学安徽省智能感知与计算重点实验室
安庆师范大学计算机与信息学院
出处
《安庆师范大学学报(自然科学版)》
2017年第3期53-55,共3页
基金
国家自然科学基金(11471093)
安徽省教育厅自然科学研究项目(KJ2014A142)
+1 种基金
安徽省教育厅自然科学研究重点项目(KJ2017A354)
安徽省重点实验室情感计算与先进智能机器开放课题项目(ACAIM160102)
文摘
特征提取是3D点云配准中的重要步骤。针对RGBD点云数据独有的颜色信息,提出一种自适应平衡因子的混合特征提取算法。首先,引入几何特征度、颜色特征度和混合特征度的概念,混合特征度由几何特征度、颜色特征度和平衡因子决定。然后提出一种自适应的平衡因子估计方法,针对不同模型的几何特性和颜色特性自适应估算平衡因子,计算混合特征度,并根据混合特征度选择特征点集,最后采用改进的6DICP算法进行配准。实验结果显示,该算法提高了RGBD点云数据的配准精度、减少了算法耗时。
关键词
特征提取
混合特征度
自适应平衡因子
rgbd
点云
数据
差
Keywords
feature extraction
adaptive balance factor
mixed feature degree
rgbd
point cloud data
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RGBD的实时头部姿态估计
陈国军
杨静
程琰
尹鹏
《图学学报》
CSCD
北大核心
2019
8
下载PDF
职称材料
2
基于K-means聚类的RGBD点云去噪和精简算法
苏本跃
马金宇
彭玉升
盛敏
《系统仿真学报》
CAS
CSCD
北大核心
2016
30
下载PDF
职称材料
3
基于非参数化采样的单幅图像深度估计
朱尧
喻秋
《计算机应用研究》
CSCD
北大核心
2017
5
下载PDF
职称材料
4
面向RGBD深度数据的快速点云配准方法
苏本跃
马金宇
彭玉升
盛敏
马祖长
《中国图象图形学报》
CSCD
北大核心
2017
5
原文传递
5
自适应平衡因子的混合特征提取算法
盛敏
彭玉升
苏本跃
韩韦
《安庆师范大学学报(自然科学版)》
2017
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部