期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于非参数化采样的单幅图像深度估计
被引量:
5
1
作者
朱尧
喻秋
《计算机应用研究》
CSCD
北大核心
2017年第6期1876-1880,共5页
针对传统单幅图像深度估计线索不足及深度估计精度不准的问题,提出一种基于非参数化采样的单幅图像深度估计方法。该方法利用非参数化的学习手段,将现有RGBD数据集中的深度信息迁移到输入图像中去。首先计算输入图像和现有RGBD数据集多...
针对传统单幅图像深度估计线索不足及深度估计精度不准的问题,提出一种基于非参数化采样的单幅图像深度估计方法。该方法利用非参数化的学习手段,将现有RGBD数据集中的深度信息迁移到输入图像中去。首先计算输入图像和现有RGBD数据集多尺度的高层次图像特征;然后在现有RGBD数据集中,基于高层次的图像特征通过KNN最近邻搜索找到若干与输入图像特征最匹配的候选图像,并将这些候选图像通过SIFT流形变到输入图像进行对齐;最后对候选深度图进行插值和平滑等优化操作,便可以得到最后的深度图。实验结果表明,与现有算法相比,该方法估计得到的深度图精度更高,对输入图像的整体结构保持得更好。
展开更多
关键词
单幅图像
深度估计
非参数化采样
rgbd数据集
下载PDF
职称材料
题名
基于非参数化采样的单幅图像深度估计
被引量:
5
1
作者
朱尧
喻秋
机构
武汉大学计算机学院
出处
《计算机应用研究》
CSCD
北大核心
2017年第6期1876-1880,共5页
基金
国家自然科学基金资助项目(61300125)
文摘
针对传统单幅图像深度估计线索不足及深度估计精度不准的问题,提出一种基于非参数化采样的单幅图像深度估计方法。该方法利用非参数化的学习手段,将现有RGBD数据集中的深度信息迁移到输入图像中去。首先计算输入图像和现有RGBD数据集多尺度的高层次图像特征;然后在现有RGBD数据集中,基于高层次的图像特征通过KNN最近邻搜索找到若干与输入图像特征最匹配的候选图像,并将这些候选图像通过SIFT流形变到输入图像进行对齐;最后对候选深度图进行插值和平滑等优化操作,便可以得到最后的深度图。实验结果表明,与现有算法相比,该方法估计得到的深度图精度更高,对输入图像的整体结构保持得更好。
关键词
单幅图像
深度估计
非参数化采样
rgbd数据集
Keywords
single image
depth estimation
non-parameirie sampling
rgbd
datasets
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于非参数化采样的单幅图像深度估计
朱尧
喻秋
《计算机应用研究》
CSCD
北大核心
2017
5
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部