期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
大兴安岭林区无人机可见光影像散发枯立木识别算法 被引量:6
1
作者 俞天宇 倪文俭 +1 位作者 刘见礼 张志玉 《遥感学报》 EI CSCD 北大核心 2021年第3期725-736,共12页
枯立木识别对森林资源管理,生物多样性保护,以及森林碳储量变化评估具有重要价值。无人机高分辨率影像为枯立木调查提供了较为便捷的方式。现有枯立木识别算法多依靠拥有红边、近红外波段的多光谱影像来实现。相比于多光谱相机,消费级... 枯立木识别对森林资源管理,生物多样性保护,以及森林碳储量变化评估具有重要价值。无人机高分辨率影像为枯立木调查提供了较为便捷的方式。现有枯立木识别算法多依靠拥有红边、近红外波段的多光谱影像来实现。相比于多光谱相机,消费级无人机通常搭载的是用于获取可见光(RGB)影像的普通数码相机,较少的波段信息为基于RGB影像的枯立木自动化精准识别带来很大的挑战。现有利用无人机可见光影像进行枯立木高精度识别多依赖于人工目视解译,自动化识别程度较低,且缺乏单木尺度的研究;此外,现有研究多集中在强扰动(如病虫害)引起的群发枯立木上,而对森林自然演替过程中产生的散发枯立木关注较少。为此,本研究提出了利用无人机可见光影像进行单木尺度的散发枯立木高精度自动化识别算法。在已有单木分割算法的基础上,发展了基于红绿波段比值(RGI)和蓝绿波段比值(BGI)光谱指数迭代统计分析的枯立木树冠自动化检测算法,提出了基于数字表面模型纹理特征的森林掩膜自动提取方法,实现了单木尺度的散发枯立木自动识别。经过实地调查和目视解译的枯立木参考数据的验证,结果表明枯立木查全率和精确率均接近95%,单木树冠分割结果中的欠分割和错分割是枯立木识别误差的主要来源,提高单木树冠提取精度是进一步完善单木尺度枯立木识别的关键。 展开更多
关键词 散发枯立木 单木尺度 无人机 可见光影像 森林掩膜 BGI指数 rgi指数 大兴安岭
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部