To design the amorphous hydrogen storage alloy efficiently, the maximum hydrogen capacities for Zr - Ni amorphous alloy were calculated. Based on the Rhomb Unit Structure Model(RUSM) for amorphous alloy and the experi...To design the amorphous hydrogen storage alloy efficiently, the maximum hydrogen capacities for Zr - Ni amorphous alloy were calculated. Based on the Rhomb Unit Structure Model(RUSM) for amorphous alloy and the experimental result that hydrogen atoms exist in 3Zr1Ni and 4Zr tetrahedron interstices in Zr-Ni amolphous alloy, the numbers of 3Zr-1Ni and 4Zr tetrahedron interstices in a RUSM were calculated which correspond to the hydrogen capacity. The two extremum Zr distribution states were calculated, such as highly heterogeneous Zr distribution and homogeneous Zr distribution. The calculated curves of hydrogen capacity with different Zr contents at two states indicate that the hydrogen capacity increases with increasing Zr content and reaches its maximum when Zr is 75%. The theoretical maximum hydrogen capacity for Zr - Ni amorphous alloy is 2.0 (H/M). Meanwhile, the hydrogen capacity of heterogenous Zr distribution alloy is higher than that of homogenous one at the same Zr content. The experimental results prove the calculated results reasonable, and accordingly, the experimental results that the distribution of Zr atom in amorphous alloy occur heterogeneous after a few hydrogen absorption desorption cycles can be explained.展开更多
Many experimental results have shown that the property of amorphous alloys has certain relation with composition, because the change in composition can result in change in structure of amorphous alloys.So in order to ...Many experimental results have shown that the property of amorphous alloys has certain relation with composition, because the change in composition can result in change in structure of amorphous alloys.So in order to understand the influence展开更多
基金Supported by Foundation of National Nature Science(59872024)
文摘To design the amorphous hydrogen storage alloy efficiently, the maximum hydrogen capacities for Zr - Ni amorphous alloy were calculated. Based on the Rhomb Unit Structure Model(RUSM) for amorphous alloy and the experimental result that hydrogen atoms exist in 3Zr1Ni and 4Zr tetrahedron interstices in Zr-Ni amolphous alloy, the numbers of 3Zr-1Ni and 4Zr tetrahedron interstices in a RUSM were calculated which correspond to the hydrogen capacity. The two extremum Zr distribution states were calculated, such as highly heterogeneous Zr distribution and homogeneous Zr distribution. The calculated curves of hydrogen capacity with different Zr contents at two states indicate that the hydrogen capacity increases with increasing Zr content and reaches its maximum when Zr is 75%. The theoretical maximum hydrogen capacity for Zr - Ni amorphous alloy is 2.0 (H/M). Meanwhile, the hydrogen capacity of heterogenous Zr distribution alloy is higher than that of homogenous one at the same Zr content. The experimental results prove the calculated results reasonable, and accordingly, the experimental results that the distribution of Zr atom in amorphous alloy occur heterogeneous after a few hydrogen absorption desorption cycles can be explained.
文摘Many experimental results have shown that the property of amorphous alloys has certain relation with composition, because the change in composition can result in change in structure of amorphous alloys.So in order to understand the influence