Objective The nearly parallel N-S-trending rifts in southern Tibet represent the E-W extension of the Tibet Plateau. Most data which constrained the age of the extensional deformation come from isotopic dating of the...Objective The nearly parallel N-S-trending rifts in southern Tibet represent the E-W extension of the Tibet Plateau. Most data which constrained the age of the extensional deformation come from isotopic dating of the dikes probably related to the activity of the nearly N-S faulting and micas from hydrothermal activity and the low- temperature thermochronology of plateau uplift. Previous research shows that there are at least three different ideas about the age of the rifts: (1) older than 16-12 Ma, (2) 14- 10 Ma, and (3) 8-4 Ma (Fig. la). For the old sedimentary strata represented the beginning of the rifting, the dating of the sediments helps to better define the initial rifting age.展开更多
The Tarim block,located in northwestern China,is one of the largest blocks in China.Precambrian rifts in the Tarim block control the evolution of Paleozoic rifts.On the basis of previous research by other authors,and ...The Tarim block,located in northwestern China,is one of the largest blocks in China.Precambrian rifts in the Tarim block control the evolution of Paleozoic rifts.On the basis of previous research by other authors,and also展开更多
On the basis of reprocessing 34 new two-dimensional spliced long sections(20,191 km) in the Tarim Basin, the deep structure features of the Tarim Basin were analyzed through interpreting 30,451 km of two-dimensional s...On the basis of reprocessing 34 new two-dimensional spliced long sections(20,191 km) in the Tarim Basin, the deep structure features of the Tarim Basin were analyzed through interpreting 30,451 km of two-dimensional seismic data and compiling basic maps. Seismic interpretation and geological analysis conclude that the Nanhua-Sinian strata are a set of rift-depression depositional systems according to their tectonic and depositional features. The rift valley formed in the Nanhua Period, and the transformation became weaker during the late Sinian Period, which eventually turned into depression. From bottom to top, the deposited strata include mafic igneous, tillite, mudstone, and dolomite. Three major depocenters developed inside this basin during the rift stage and are distributed in the eastern Tarim Basin, the Awati area, and the southwestern Tarim Basin. Among them, the rift in the eastern Tarim Basin strikes in the near east-west direction on the plane and coincides with the aeromagnetic anomaly belt. This represents a strong magnetic zone formed by upwelling basic volcanic rock along high, steep normal faults of the Nanhua Period. Controlled by the tectonic background, two types of sedimentary systems were developed in the rift stage and depression stage, showing two types of sequence features in the Sinian depositional stage. The Nanhua System appears as a wedge-shaped formation, with its bottom in unconformable contact with the base. The rifting event has a strong influence on the current tectonic units in the Tarim Basin, and affects the distribution of source rock in the Yuertus Formation and reservoir beds in the Xiaoerbulake Formation in Lower Cambrian, as well as the gypseous cap rock in Middle Cambrian. The distribution features of the rifts have important and realistic significance for determining the direction of oil and gas exploration in the deep strata of the Tarim Basin. Comprehensive analysis suggests that the Tazhong region is the most favorable zone, and the Kalpin-Bachu region is the optimal potential zone for exploring sub-salt oil and gas in deep Cambrian strata.展开更多
Based on seismic data,outcrop evidence,logging data and regional aeromagnetic data,the distribution of Nanhua–Sinian rifts in the southwestern Tarim Basin was analyzed,and on the basis of restoration of lithofacies p...Based on seismic data,outcrop evidence,logging data and regional aeromagnetic data,the distribution of Nanhua–Sinian rifts in the southwestern Tarim Basin was analyzed,and on the basis of restoration of lithofacies paleogeography in different periods of Neoproterozoic–Cambrian,the evolution model of the proto-type rift basin was discussed.The Neoproterozoic Rodinia supercontinent split event formed the trigeminal rift system at the edge and inside of the craton in the southwestern Tarim Basin located in the Kunlun piedmont and Maigaiti slope.The rift in Kunlun piedmont zone was distributed along the E-W direction and was the oceanic rift in the trigeminal rift system.Two decadent rifts in N-E strike developed in the Luonan and Yubei areas of Maigaiti slope,and the interior of the rifts were characterized by a composite graben-horst structure composed of multiple grabens and horsts.The Neoproterozoic–Cambrian proto-type basin evolution in the southwestern Tarim Basin can be divided into three stages:rift in the Nanhua,embryonic passive continental margin in the Sinian,and stable passive continental margin in the Cambrian.Despite the regional tectonic movements in the end of Nanhua and Sinian,the tectonic framework of the southwestern Tarim Basin had not changed significantly,the sedimentary center of Nanhua rift basin showed the characteristics of succession in the Sinian–Early Cambrian.The Nanhua rift in Kunlun piedmont evolved into a craton marginal depression during the Sinian–Early Paleozoic,while the Luonan decadent rift in the midsection of Maigaiti slope evolved into a sag inside platform in Early Cambrian,constituting the paleogeographic framework of"two paleouplifts and one sag"with the paleouplifts in east and west sides of the slope.The later evolution of the Luonan decadent rift in the midsection of the Maigaiti slope formed two sets of reservoir-forming assemblages,the Sinian and the Lower Cambrian ones,which are important exploration targets in future.展开更多
The lithosphere of the North China Craton(NCC)has experienced significant destruction and deformation since the Mesozoic,a notable feature of which is the widespread extensional structure and lithospheric thinning in ...The lithosphere of the North China Craton(NCC)has experienced significant destruction and deformation since the Mesozoic,a notable feature of which is the widespread extensional structure and lithospheric thinning in the eastern NCC.Since the thermo-rheological structure of the lithosphere is one of the main factors controlling these dynamic processes,a threedimensional thermo-rheological model of the present lithosphere in the NCC was developed based on a geophysical-petrological method using a variety of data,and its relationship with the extensional structures and the formation of rifts was further analyzed.Our results show that the western NCC is characterized by thick lithosphere,low Moho temperature(TMoho<600°C),as well as high lithospheric strength and mantle-crust strength ratio(Sm/Sc>1).The deformation of the western narrow rift is consistent with the localized deformation dominated by the strength of lithospheric mantle.On the other hand,the lithosphere in the eastern NCC is characterized by extensive thinning(with lithospheric thickness of about 80–110 km).However,the decrease of lithospheric strength is not uniform,with high strength(10×1012 Pa m)observed in some areas(such as the Bohai Bay Basin and Hehuai Basin).Most of the eastern lithosphere is characterized by high TMoho(600–750°C)and low Sm/Sc(<1),which is inconsistent with the widespread extensional structure in the eastern NCC.Incorporating results from palaeo-geothermal and petrological studies,we developed a thermo-rheological structure model of the lithosphere at different evolutionary stages of the NCC,and suggested that the eastern NCC had a significantly thinned and weakened lithosphere in the early stages of the formation of the rift,leading to a regional distributed extension deformation dominated by crustal strength,which eventually evolved into a series of wide rifts.However,the cooling and accretion of the lithosphere in the subsequent stages significantly increased the strength of the lithospheric mantle,resulting in the inconsistency between the present thermo-rheological structure of the lithosphere and the extensional structure formed in the past.展开更多
The Meso-Neoproterozoic strata are wildly distributed in North China Craton(NCC),of which Changchengian strata are most widely developed.Taking Changchengian strata in south margin of NCC as the study object,and combi...The Meso-Neoproterozoic strata are wildly distributed in North China Craton(NCC),of which Changchengian strata are most widely developed.Taking Changchengian strata in south margin of NCC as the study object,and combined with comprehensive analysis of isotopic chronology and petrology,it can be concluded that the Xiong'er rift is a plume rift which responds to breakup of Columbia supercontinent.Seismic data shows that Changchengian rifts are developed in the Qinshui Basin and the southern part of Ordos Basin covered by Phanerozoic strata,respectively are large-scale graben rifts and half-graben rifts.Aero magnetic data indicates that a NE-trending rift is developed in the west of the Xiong'er rift,and the Qinshui Basin rift is the extension of the north branch of the Xiong'er rift.The filling process of Changchengian rifts can be divided into four stages:the early rifting stage developing thick andesitic volcanic rocks,the late rifting stage developing large suite of coarse clastic sedimentary rocks,the depression stage developing fine clastic rocks,and the epeiric sea stage developing carbonate rocks.The dark argillaceous rocks are developed in Cuizhuang Formation and Chenjiajian Formation during the depression stage,and the black shale in Cuizhuang Formation is the effective source rocks.The bitume is filled in fractures of dolomite in Luoyukou Formation,as well as dissolution pores and large caves in Longjiayuan Formation.The argillaceous sandstone and muddy limestone of Lower Cambrian is the effective cap rocks,which can form an potential accumulation assemblage of Changchengian strata with underlying source rocks of Cuizhuang Formation and reservoirs of Luoyu Group,and this assemblage may be still effective at present.展开更多
In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-...In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).展开更多
Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.Th...Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.The study shows that the Central African Rift System mainly develops high-quality lacustrine source rocks in the Lower Cretaceous,and the West African Rift System mainly develops high-quality terrigenous organic matter-rich marine source rocks in the Upper Cretaceous,and the two types of source rocks provide a material basis for the enrichment of oil and gas in the CWARS.Multiple sets of reservoir rocks including fractured basement and three sets of regional cap rocks in the Lower Cretaceous,the Upper Cretaceous,and the Paleogene are developed in the CWARS.Since the Late Mesozoic,due to the geodynamic factors including the dextral strike-slip movement of the Central African Shear Zone,the basins in different directions of the CWARS differ in terms of rifting stages,intervals of regional cap rocks,trap types and accumulation models.The NE-SW trending basins have mainly preserved one stage of rifting in the Early Cretaceous,with regional cap rocks developed in the Lower Cretaceous strata,forming traps of reverse anticlines,flower-shaped structures and basement buried hill,and two types of hydrocarbon accumulation models of"source and reservoir in the same formation,and accumulation inside source rocks"and"up-source and down-reservoir,and accumulation below source rocks".The NW–SE basins are characterized by multiple rifting stages superimposition,with the development of regional cap rocks in the Upper Cretaceous and Paleogene,forming traps of draping anticlines,faulted anticlines,antithetic fault blocks and the accumulation model of"down-source and up-reservoir,and accumulation above source rocks".The combination of reservoir and cap rocks inside source rocks of basins with multiple superimposed rifting stages,as well as the lithologic reservoirs and the shale oil inside source rocks of strong inversion basins are important fields for future exploration in basins of the CWARS.展开更多
Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of or...Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.展开更多
Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in ...Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.展开更多
The Wadi Natash volcanic field(WNVF)in the south of the Eastern Desert of Egypt is a typical example of well-preserved intraplate alkaline magmatism during the Late Cretaceous,i.e.,prior to the Oligo-Miocene Red Sea r...The Wadi Natash volcanic field(WNVF)in the south of the Eastern Desert of Egypt is a typical example of well-preserved intraplate alkaline magmatism during the Late Cretaceous,i.e.,prior to the Oligo-Miocene Red Sea rift.We compiled stratigraphic sections at two sectors;namely East Gabal Nuqra and West Khashm Natash(WKN)where the volcanic flows are intercalated with the Turonian Abu Agag sandstone with occasional paleosols when volcanic activity is intermittent.Peridotite mantle xenoliths are encountered in the first sector whereas flows in the second sector are interrupted by trachyte plugs and ring dykes.On a geochemical basis,the maifc melt originating from the lithospheric mantle beneath the WNVF practiced~5%partial melting of phlogopite-bearing garnet peridotite.Basalts dominate in the two sectors and highly evolved(silicic)rocks are confined to the WKN sector.Rejuvenation of ancient Precambrian fractures following the NW-SE and ENE-WSW trends facilitated the ascend of Late Cretaceous mantle-derived alkaline magma.Structurally,the WNVF developed at the eastern shoulder of the so-called"Kom Ombo-Nuqra-Kharit rift system"that represents a well-defined NW-trending intracontinental rift basin in the southern Eastern Desert.In such a structural setup,the Natash volcanic are confined to half-grabens at the East Gabal Nuqra sector whereas the West Khashm Natash sector is subjected to extensional stresses that propagated eastwards.The WNVF is a typical example of fluvial clastics(Turonian)intercalation with rift-related alkaline volcanic rocks in northeast Africa.展开更多
By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and develop...By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and development difficulties of shale oil in the Jiyang continental rift lake basin,East China,the development technology system suitable for the geological characteristics of shale oil in continental rift lake basins has been primarily formed through innovation and iteration of the development,drilling and fracturing technologies.The technology system supports the rapid growth of shale oil production and reduces the development investment cost.By comparing it with the shale oil development technology in the United States,the prospect of the shale oil development technology iteration in continental rift lake basins is proposed.It is suggested to continuously strengthen the overall three-dimensional development,improve the precision level of engineering technology,upgrade the engineering technical indicator system,accelerate the intelligent optimization of engineering equipment,explore the application of complex structure wells,form a whole-process integrated quality management system from design to implementation,and constantly innovate the concept and technology of shale oil development,so as to promote the realization of extensive,beneficial and high-quality development of shale oil in continental rift lake basins.展开更多
The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To ...The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To reveal the essence of western Paleo-Pacific subduction during the Triassic period,Well NK-1 in this block was selected for petrographic study,and published research data from other cooperative teams were compared.A double-cycle pattern of basic to neutral magmatic volcanism was established,and 36 lithological rhythmic layers and representative cryptoexplosive breccia facies and welded tuff bands were identified.Combined with a reanalysis of published geochronological data,geochemical elements,and isotope geochemistry,we found that the rock assemblages could be divided into an intermediate-acid dacite(DA)series(SiO_(2)>65%)and basaltic(BA)series(Co<40μg/g),which was formed during the early Late Triassic((218.6±3.2)–(217.9±3.5)Ma).BA exhibits obvious calc-alkaline island-arc magmatic properties:(^(87)Sr/^(86)Sr)_i ratio ranging 0.70377–0.71118(average:0.70645),^(147)Sm/^(144)Nd ratio ranging 0.119–0.193(average:0.168),and chondrite-normalized rare earth element(REE)curves being flat,while DA exhibits remarkable characteristics of subducted island-arc andesitic magma:(^(87)Sr/^(86)Sr)_i ratio(0.70939–0.71129;average:0.71035),εNd(t)value(-6.2–-4.8;average:-5.6)andε_(Hf)(t)value(-2.9–-1.7,average:-2.2)show obvious crust-mantle mixing characteristics.BA and DA reveal typical characteristics of island-arc magma systems and typeⅡenriched mantle(EM-Ⅱ)magma.BA magma was likely resulted from the process whereby the continental crust frontal accretionary wedge was driven by the Paleo-Pacific slab subduction into the deep and began to melt,resulting in a large amount of melt(fluid)joined the asthenosphere on the side of the continental margin.In contrast,DA magma was likely resulted from the process whereby the plate front was forced to bend with increasing subduction distance,which triggered the upwelling of the asthenosphere near the continent and subsequently led to the partial melting of the lithospheric mantle and lower crust due to continuous underplating.The lithospheric thinning environment in the study area at the end of Triassic created suitable conditions for the separation between the NB and SCC,which provided an opportunity for the formation of the early intracontinental rift during the later expansion of the South China Sea(SCS).展开更多
The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
The lower Cambrian Qiongzhusi(Є1 q)shale in the Sichuan Basin,formerly considered a source rock,recently achieved high gas production(7.388×105 m^(3)·d^(-1))from well Z201 in the Deyang-Anyue rift trough(DAR...The lower Cambrian Qiongzhusi(Є1 q)shale in the Sichuan Basin,formerly considered a source rock,recently achieved high gas production(7.388×105 m^(3)·d^(-1))from well Z201 in the Deyang-Anyue rift trough(DART),marking an exploration breakthrough of the world’s oldest industrial shale gas reser-voir.However,the shale gas enrichment mechanism within the DART is not fully understood.This study reviews the formation of the Qiongzhusi shale gas reservoirs within the DART by comparing them with cotemporaneous deposits outside the DART,and several findings are presented.The gas production interval was correlated with the main phase of the Cambrian explosion(lower Cambrian stage 3).In the early Cambrian ecosystem,dominant animals likely accelerated the settling rates of organic matter(OM)in the upper 1st member ofЄ_(1) q(Є_(1) q_(12))by feeding on small planktonic organisms and producing larger organic fragments and fecal pellets.High primary productivity and euxinic con-ditions contributed to OM enrichment in the lower 1st member ofЄ1 q(Є_(1) q_(11)).Additionally,shale reservoirs inside the DART demonstrated better properties than those outside in terms of thickness,brittle minerals,gas content,and porosity.In particular,the abundant OM pores inside the DART facil-itated shale gas enrichment,whereas the higher thermal maturity of the shales outside the DART pos-sibly led to the graphitization and collapse of some OM pores.Meanwhile,the overpressure of high-production wells inside the DART generally reflects better shale gas preservation,benefiting from the shale’s self-sealing nature,"upper capping and lower plugging"configuration,and limited faults and microfractures.Considering these insights,we introduced a"ternary enrichment"model for the Qiongzhusi shale gas.Although the current high gas production of Z201 was found at the reservoir 3,two additional reservoirs were identified with significant potential,thus suggesting a"multilayer stereoscopic development"strategy in future shale gas exploration within the DART.展开更多
Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine suc...Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.展开更多
The Mesoproterozoic rifts are developed in the Ordos Basin located in the western margin of the North China Plate.Based on the latest 3D seismic data and previous research results,this study intends to discuss the zon...The Mesoproterozoic rifts are developed in the Ordos Basin located in the western margin of the North China Plate.Based on the latest 3D seismic data and previous research results,this study intends to discuss the zonal differential deformation characteristics and genetic mechanism of the Mesoproterozoic rifts in the Ordos Basin.NE-trending rifts are developed in the Mesoproterozoic in the south-central Ordos Basin,the main part of which are located near the western margin of the North China Plate.NNW-trending rifts are developed in the north of the basin,while NW-NNW rifts in the Mesoproterozoic in Hangjinqi area.The genetic mechanism of the Mesoproterozoic rifts is related to regional extensional stress field,plate boundary conditions and internal preexisting structures.The main extensional stress direction strikes NWW-SSE(120°)in the western margin of the North China Plate,based on the forward rift trend of the northern Mesoproterozoic.In Hangjinqi area,the reactivation of the existing NWtrending Wulansu fault and NW-NW-trending Daolao fault,results in dextral shear stress field.The boundary between the western margin of the North China Plate and its adjacent plates forms a nearly NS-trending preexisting basement tectonic belt,which intersects with the NWW-SSE(120°)extensional stress at an acute angle of 60°.Therefore,the western margin of the North China Plate is formed by oblique normal faults under oblique extension.Due to the long time span of Columbia Supercontinent breakup(1.8e1.6 Ga),the oblique rift in the south-central Ordos Basin is formed under the continuous oblique extension at the western margin of the North China Plate.展开更多
Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and less...Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and lessen or stop the spread of zoonotic diseases to humans. Animal vaccines that are both safe and efficacious are vital to modern culture. The vaccine should induce a strong, protective and prolonged immune response against the antigenic factor. In order to achieve these goals, novel vaccination techniques and an efficient adjuvant are required to render the vaccine immunogenically protective and trigger a strong immune response. Aim: Our study aims to promote and enhance the immunogenicity against RVF virus disease through lyophilized inactivated RVF vaccine through induction of early cellular, high and prolonged humeral immunity in vaccinated animals using cabopol as stabilizer and Saponin or normal saline as a diluent at time of vaccination. Moreover, manufacturing of these vaccines is easy to be done. Results: The gained results revealed that RVF freeze-dried vaccine with Carbopol that reconstituted using Saponin elicited better immune response than that reconstituted using normal saline (NaCl). The cell mediated immune response as represented by lymphocyte blastogenesis and phagocytic activity were markedly increased with high levels when we used Saponin as a diluent than that in group vaccinated with vaccine diluted with NaCl, on the other side the humeral immune response in group vaccinated using the Saponin as diluent is more detected and stayed within the protective level till the end of 11<sup>th</sup> month post vaccination (1.5 TCID<sub>50</sub>) while the immune response induced after using normal saline as a diluent stayed within the protective level till the end of 10<sup>th</sup> month post vaccination (1.8 TCID<sub>50</sub>). Conclusion: The use of Saponin as a diluent for reconstitution of the freeze dried RVF vaccine is preferable than the use of normal saline enhancing both sheep cellular and humeral immune response.展开更多
The West Congo Belt contains in its rocks of Neoproterozoic age from Nemba complex outcropping in the Moumba River. This West Congo belt is made up of a crustal segment of the Arcuaï-West Congo orogen which exten...The West Congo Belt contains in its rocks of Neoproterozoic age from Nemba complex outcropping in the Moumba River. This West Congo belt is made up of a crustal segment of the Arcuaï-West Congo orogen which extends from southwest Gabon to the northeast of Angola. This study aims to constrain the geochemical signature Nemba complex of West Congo belt from the petrograhic and geochemical study on the whole rock. The petrographic data from this study show the Moumba metabasites are made up of amphibolites, metagabbros, epidotites and greenschists interstratified in the Eburnean metasediments and affected by mesozonal to epizonal metamorphism characterized by the retromorphosis of intermediate amphibolite facies minerals into greenschist facies. Whole-rock geochemical data indicate that these metabasites are continental flood basalts (CFB) of basic nature and transitional affinity emplaced in intraplate context. These continental flood basalts are generated from magma originating from a significantly enriched shallow mantle plume and this magma then contaminated by the continental crust during their ascent. The reconstruction of tectonic signature suggests that West Congo belt would result from closure of an ocean basin with subduction phenomena. This collision would be marked by the establishment of ophiolite complex. We show that this model is incompatible with the CFB nature of metabasites and the orogenic evolution of Neoproterozoic. It does not seem that we can evoke a genetic link with a subduction of oceanic crust, because the paleogeography of Neoproterozoic (Rodinia) is marked by intracontinental rifts linked to opening of Rodinia. We therefore suggest the non-existence of ophiolitic complex in western Congo belt and reject the collisional model published by certain authors. We confirm the currently available intracontinental orogen model.展开更多
The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at south...The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at southern end of Yadong-Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluviolacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance(ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence(OSL) dating showed that moraine in the graben mainly developed from around181-109 ka(late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8-15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15-8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake.Following by a geologically quiet period about 8-2.5 Ma, the paleolake expanded from east to west at around 8-6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last,the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.展开更多
基金supported by the National Natural Science Foundation of China(grant No.41571013)Project of China Geological Survey(grant No.12120114002101)
文摘Objective The nearly parallel N-S-trending rifts in southern Tibet represent the E-W extension of the Tibet Plateau. Most data which constrained the age of the extensional deformation come from isotopic dating of the dikes probably related to the activity of the nearly N-S faulting and micas from hydrothermal activity and the low- temperature thermochronology of plateau uplift. Previous research shows that there are at least three different ideas about the age of the rifts: (1) older than 16-12 Ma, (2) 14- 10 Ma, and (3) 8-4 Ma (Fig. la). For the old sedimentary strata represented the beginning of the rifting, the dating of the sediments helps to better define the initial rifting age.
基金supported by funds from the National Natural Science Foundation of China (Grant No. 41530207)State Key Projects (2014A0213 and 2016ZX05051004)
文摘The Tarim block,located in northwestern China,is one of the largest blocks in China.Precambrian rifts in the Tarim block control the evolution of Paleozoic rifts.On the basis of previous research by other authors,and also
基金the projects of the China Geological Survey Program(Grant No.DD20160169.12120115001801,1211302108022 and DD20190708).
文摘On the basis of reprocessing 34 new two-dimensional spliced long sections(20,191 km) in the Tarim Basin, the deep structure features of the Tarim Basin were analyzed through interpreting 30,451 km of two-dimensional seismic data and compiling basic maps. Seismic interpretation and geological analysis conclude that the Nanhua-Sinian strata are a set of rift-depression depositional systems according to their tectonic and depositional features. The rift valley formed in the Nanhua Period, and the transformation became weaker during the late Sinian Period, which eventually turned into depression. From bottom to top, the deposited strata include mafic igneous, tillite, mudstone, and dolomite. Three major depocenters developed inside this basin during the rift stage and are distributed in the eastern Tarim Basin, the Awati area, and the southwestern Tarim Basin. Among them, the rift in the eastern Tarim Basin strikes in the near east-west direction on the plane and coincides with the aeromagnetic anomaly belt. This represents a strong magnetic zone formed by upwelling basic volcanic rock along high, steep normal faults of the Nanhua Period. Controlled by the tectonic background, two types of sedimentary systems were developed in the rift stage and depression stage, showing two types of sequence features in the Sinian depositional stage. The Nanhua System appears as a wedge-shaped formation, with its bottom in unconformable contact with the base. The rifting event has a strong influence on the current tectonic units in the Tarim Basin, and affects the distribution of source rock in the Yuertus Formation and reservoir beds in the Xiaoerbulake Formation in Lower Cambrian, as well as the gypseous cap rock in Middle Cambrian. The distribution features of the rifts have important and realistic significance for determining the direction of oil and gas exploration in the deep strata of the Tarim Basin. Comprehensive analysis suggests that the Tazhong region is the most favorable zone, and the Kalpin-Bachu region is the optimal potential zone for exploring sub-salt oil and gas in deep Cambrian strata.
基金Supported by China National Science and Technology Major Project(2016ZX05004-003)the PetroChina Science and Technology Major Project(kt2018-02-04)
文摘Based on seismic data,outcrop evidence,logging data and regional aeromagnetic data,the distribution of Nanhua–Sinian rifts in the southwestern Tarim Basin was analyzed,and on the basis of restoration of lithofacies paleogeography in different periods of Neoproterozoic–Cambrian,the evolution model of the proto-type rift basin was discussed.The Neoproterozoic Rodinia supercontinent split event formed the trigeminal rift system at the edge and inside of the craton in the southwestern Tarim Basin located in the Kunlun piedmont and Maigaiti slope.The rift in Kunlun piedmont zone was distributed along the E-W direction and was the oceanic rift in the trigeminal rift system.Two decadent rifts in N-E strike developed in the Luonan and Yubei areas of Maigaiti slope,and the interior of the rifts were characterized by a composite graben-horst structure composed of multiple grabens and horsts.The Neoproterozoic–Cambrian proto-type basin evolution in the southwestern Tarim Basin can be divided into three stages:rift in the Nanhua,embryonic passive continental margin in the Sinian,and stable passive continental margin in the Cambrian.Despite the regional tectonic movements in the end of Nanhua and Sinian,the tectonic framework of the southwestern Tarim Basin had not changed significantly,the sedimentary center of Nanhua rift basin showed the characteristics of succession in the Sinian–Early Cambrian.The Nanhua rift in Kunlun piedmont evolved into a craton marginal depression during the Sinian–Early Paleozoic,while the Luonan decadent rift in the midsection of Maigaiti slope evolved into a sag inside platform in Early Cambrian,constituting the paleogeographic framework of"two paleouplifts and one sag"with the paleouplifts in east and west sides of the slope.The later evolution of the Luonan decadent rift in the midsection of the Maigaiti slope formed two sets of reservoir-forming assemblages,the Sinian and the Lower Cambrian ones,which are important exploration targets in future.
基金supported by the National Natural Science Foundation of China(Grant Nos.41731072,41574095)the National Key R&D Program of China(Grant No.2017YFC1500305)Most figures were prepared with the Generic Mapping Tools(Wessel and Smith,1998)。
文摘The lithosphere of the North China Craton(NCC)has experienced significant destruction and deformation since the Mesozoic,a notable feature of which is the widespread extensional structure and lithospheric thinning in the eastern NCC.Since the thermo-rheological structure of the lithosphere is one of the main factors controlling these dynamic processes,a threedimensional thermo-rheological model of the present lithosphere in the NCC was developed based on a geophysical-petrological method using a variety of data,and its relationship with the extensional structures and the formation of rifts was further analyzed.Our results show that the western NCC is characterized by thick lithosphere,low Moho temperature(TMoho<600°C),as well as high lithospheric strength and mantle-crust strength ratio(Sm/Sc>1).The deformation of the western narrow rift is consistent with the localized deformation dominated by the strength of lithospheric mantle.On the other hand,the lithosphere in the eastern NCC is characterized by extensive thinning(with lithospheric thickness of about 80–110 km).However,the decrease of lithospheric strength is not uniform,with high strength(10×1012 Pa m)observed in some areas(such as the Bohai Bay Basin and Hehuai Basin).Most of the eastern lithosphere is characterized by high TMoho(600–750°C)and low Sm/Sc(<1),which is inconsistent with the widespread extensional structure in the eastern NCC.Incorporating results from palaeo-geothermal and petrological studies,we developed a thermo-rheological structure model of the lithosphere at different evolutionary stages of the NCC,and suggested that the eastern NCC had a significantly thinned and weakened lithosphere in the early stages of the formation of the rift,leading to a regional distributed extension deformation dominated by crustal strength,which eventually evolved into a series of wide rifts.However,the cooling and accretion of the lithosphere in the subsequent stages significantly increased the strength of the lithospheric mantle,resulting in the inconsistency between the present thermo-rheological structure of the lithosphere and the extensional structure formed in the past.
基金The work was supported by the National Key Research and Development Program of China(No.2016YFC0601002)Frontier Basic Research Program of PetroChina Research Institute of Petroleum Exploration and Development(No.2015yj-09).
文摘The Meso-Neoproterozoic strata are wildly distributed in North China Craton(NCC),of which Changchengian strata are most widely developed.Taking Changchengian strata in south margin of NCC as the study object,and combined with comprehensive analysis of isotopic chronology and petrology,it can be concluded that the Xiong'er rift is a plume rift which responds to breakup of Columbia supercontinent.Seismic data shows that Changchengian rifts are developed in the Qinshui Basin and the southern part of Ordos Basin covered by Phanerozoic strata,respectively are large-scale graben rifts and half-graben rifts.Aero magnetic data indicates that a NE-trending rift is developed in the west of the Xiong'er rift,and the Qinshui Basin rift is the extension of the north branch of the Xiong'er rift.The filling process of Changchengian rifts can be divided into four stages:the early rifting stage developing thick andesitic volcanic rocks,the late rifting stage developing large suite of coarse clastic sedimentary rocks,the depression stage developing fine clastic rocks,and the epeiric sea stage developing carbonate rocks.The dark argillaceous rocks are developed in Cuizhuang Formation and Chenjiajian Formation during the depression stage,and the black shale in Cuizhuang Formation is the effective source rocks.The bitume is filled in fractures of dolomite in Luoyukou Formation,as well as dissolution pores and large caves in Longjiayuan Formation.The argillaceous sandstone and muddy limestone of Lower Cambrian is the effective cap rocks,which can form an potential accumulation assemblage of Changchengian strata with underlying source rocks of Cuizhuang Formation and reservoirs of Luoyu Group,and this assemblage may be still effective at present.
基金the National Natural Science Foundation of China(Grant Nos.91955206,41603038)Second Tibetan Plateau Scientific Expedition and Research program(Grant No.2019QZKK0803)+2 种基金Scientific Research Foundation for Advanced ScholarsWest Yunnan University of Applied Sciences(Grant No.2022RCKY0004)Yunnan Fundamental Research Projects(Grant No.202301AT070012).
文摘In this study,zircon U-Pb dating of volcanic rocks from the Zhongba ophiolite of the Yarlung Zangbo Suture Zone(YZSZ)in southern Xizang(Tibet)yielded an age of 247±3 Ma.According to whole rock geochemical and Sr-NdPb isotopic data,the Early Triassic samples could be divided into two groups:Group 1 with P-MORB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70253–0.70602,ε_(Nd)(t)values of 4.2–5.3,(^(206)Pb/^(204)Pb)_(t)ratios of 16.353–18.222,(^(207)Pb/^(204)Pb)_(t)ratios of 15.454–15.564,and(^(208)Pb/^(204)Pb)_(t)ratios of 35.665–38.136;Group 2 with OIB affinity,showing initial^(87)Sr/^(86)Sr ratios of 0.70249–0.70513,ε_(Nd)(t)values of 4.4–4.9,(^(206)Pb/^(204)Pb)_(t)ratios of 17.140–18.328,(^(207)Pb/^(204)Pb)_(t)ratios of 15.491–15.575,and(^(208)Pb/^(204)Pb)_(t)ratios of 36.051–38.247.Group 2 rocks formed by partial melting of the mantle source enriched by a former plume,and assimilated continental crustal material during melt ascension.The formation of Group 1 rocks corresponds to the mixing of OIB melts,with the same components as Group 2 and N-MORBs.The Zhongba Early Triassic rocks belong to the continental margin type ophiolite and formed in the continental–oceanic transition zone during the initial opening of the Neo-Tethys in southern Xizang(Tibet).
基金Supported by the National Natural Science Foundation Project(92255302)National Science and Technology Major Project(2016ZX05029005)Scientific Research and Technological Development Project of PetroChina(2021DJ31).
文摘Based on seismic,drilling,and source rock analysis data,the petroleum geological characteristics and future exploration direction of the oil-rich sags in the Central and West African Rift System(CWARS)are discussed.The study shows that the Central African Rift System mainly develops high-quality lacustrine source rocks in the Lower Cretaceous,and the West African Rift System mainly develops high-quality terrigenous organic matter-rich marine source rocks in the Upper Cretaceous,and the two types of source rocks provide a material basis for the enrichment of oil and gas in the CWARS.Multiple sets of reservoir rocks including fractured basement and three sets of regional cap rocks in the Lower Cretaceous,the Upper Cretaceous,and the Paleogene are developed in the CWARS.Since the Late Mesozoic,due to the geodynamic factors including the dextral strike-slip movement of the Central African Shear Zone,the basins in different directions of the CWARS differ in terms of rifting stages,intervals of regional cap rocks,trap types and accumulation models.The NE-SW trending basins have mainly preserved one stage of rifting in the Early Cretaceous,with regional cap rocks developed in the Lower Cretaceous strata,forming traps of reverse anticlines,flower-shaped structures and basement buried hill,and two types of hydrocarbon accumulation models of"source and reservoir in the same formation,and accumulation inside source rocks"and"up-source and down-reservoir,and accumulation below source rocks".The NW–SE basins are characterized by multiple rifting stages superimposition,with the development of regional cap rocks in the Upper Cretaceous and Paleogene,forming traps of draping anticlines,faulted anticlines,antithetic fault blocks and the accumulation model of"down-source and up-reservoir,and accumulation above source rocks".The combination of reservoir and cap rocks inside source rocks of basins with multiple superimposed rifting stages,as well as the lithologic reservoirs and the shale oil inside source rocks of strong inversion basins are important fields for future exploration in basins of the CWARS.
基金Supported by the National Science and Technology Major Project of China(2017ZX05009-002)National Natural Science Foundation of China(41772090)。
文摘Based on sedimentary characteristics of the fine-grained rocks of the lower submember of second member of the Lower Cretaceous Shahezi Formation(K_(1)sh_(2)^(L))in the Lishu rift depression,combined with methods of organic petrology,analysis of major and trace elements as well as biological marker compound,the enrichment conditions and enrichment model of organic matter in the fine-grained sedimentary rocks in volcanic rift lacustrine basin are investigated.The change of sedimentary paleoenvironment controls the vertical distribution of different lithofacies types in the K_(1)sh_(2)^(L)and divides it into the upper and lower parts.The lower part contains massive siliceous mudstone with bioclast-bearing siliceous mudstone,whereas the upper part is mostly composed of laminated siliceous shale and laminated fine-grained mixed shale.The kerogen types of organic matter in the lower and upper parts are typesⅡ_(2)–Ⅲand typesⅠ–Ⅱ_(1),respectively.The organic carbon content in the upper part is higher than that in the lower part generally.The enrichment of organic matter in volcanic rift lacustrine basin is subjected to three favorable conditions.First,continuous enhancement of rifting is the direct factor increasing the paleo-water depth,and the rise of base level leads to the expansion of deep-water mudstone/shale deposition range.Second,relatively strong underwater volcanic eruption and rifting are simultaneous,and such event can provide a lot of nutrients for the lake basin,which is conducive to the bloom of algae,resulting in higher productivity of typesⅠ–Ⅱ_(1)kerogen.Third,the relatively dry paleoclimate leads to a decrease in input of fresh water and terrestrial materials,including TypeⅢkerogen from terrestrial higher plants,resulting in a water body with higher salinity and anoxic stratification,which is more favorable for preservation of organic matter.The organic matter enrichment model of fine-grained sedimentary rocks of volcanic rift lacustrine basin is established,which is of reference significance to the understanding of the organic matter enrichment mechanism of fine-grained sedimentary rocks of Shahezi Formation in Songliao Basin and even in the northeast China.
基金funded by the Second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0902)the National Natural Science Foundation of China(91747207,41790434)。
文摘Large-scale rock-ice avalanches resulting from the interaction of tectonics and climate are characterized with high mobility,huge volumes of sediment,and rapid denudation,being a major agent of landscape evolution in high altitude mountainous regions.Specifically,the extreme glaciated slope failures often transform into extraordinarily large and mobile debris flows,resulting in disastrous consequences such as sedimentation and desertification.Due to a dearth of on-site observation data and experimental data collection,our comprehension of the geomorphic and kinematic characteristics of rock-ice avalanches remains poor.Here we report a cluster of ancient rock-ice avalanches spreading along the Chomolhari range of the China-Bhutan Himalayas.By integrating remote sensing image interpretation with detailed field investigations,we demonstrate the geomorphic and sedimentary characteristics of four events among the avalanches.The estimated volumes of the four are 23.73 Mm³,39.69 Mm³,38.43 Mm³,and 38.25 Mm³,respectively.The presence of pre-existing moraines or alluvial fans constrained their movement,resulting in deposition features such as marginal digitated lobes at higher elevations and large depressed areas in the interior.Applying the Savage-Hutter theory,we calculate the basal friction angle and travel angle of these ancient rock-ice avalanches that are both less than 10°,affirming the similarity of these avalanches in the study area to those occurring in other regions.Our study significantly contributes to understanding the geomorphic and kinematic characteristics of rock-ice avalanches in high-altitude mountainous regions,providing valuable insights into their response to the disproportionate growth of Himalayan peaks.
文摘The Wadi Natash volcanic field(WNVF)in the south of the Eastern Desert of Egypt is a typical example of well-preserved intraplate alkaline magmatism during the Late Cretaceous,i.e.,prior to the Oligo-Miocene Red Sea rift.We compiled stratigraphic sections at two sectors;namely East Gabal Nuqra and West Khashm Natash(WKN)where the volcanic flows are intercalated with the Turonian Abu Agag sandstone with occasional paleosols when volcanic activity is intermittent.Peridotite mantle xenoliths are encountered in the first sector whereas flows in the second sector are interrupted by trachyte plugs and ring dykes.On a geochemical basis,the maifc melt originating from the lithospheric mantle beneath the WNVF practiced~5%partial melting of phlogopite-bearing garnet peridotite.Basalts dominate in the two sectors and highly evolved(silicic)rocks are confined to the WKN sector.Rejuvenation of ancient Precambrian fractures following the NW-SE and ENE-WSW trends facilitated the ascend of Late Cretaceous mantle-derived alkaline magma.Structurally,the WNVF developed at the eastern shoulder of the so-called"Kom Ombo-Nuqra-Kharit rift system"that represents a well-defined NW-trending intracontinental rift basin in the southern Eastern Desert.In such a structural setup,the Natash volcanic are confined to half-grabens at the East Gabal Nuqra sector whereas the West Khashm Natash sector is subjected to extensional stresses that propagated eastwards.The WNVF is a typical example of fluvial clastics(Turonian)intercalation with rift-related alkaline volcanic rocks in northeast Africa.
基金Supported by the Strategic Research and Technical Consultation Project of Sinopec Science and Technology CommissionSinopec Major Science and Technology Project(P22037)。
文摘By benchmarking with the iteration of drilling technology,fracturing technology and well placement mode for shale oil and gas development in the United States and considering the geological characteristics and development difficulties of shale oil in the Jiyang continental rift lake basin,East China,the development technology system suitable for the geological characteristics of shale oil in continental rift lake basins has been primarily formed through innovation and iteration of the development,drilling and fracturing technologies.The technology system supports the rapid growth of shale oil production and reduces the development investment cost.By comparing it with the shale oil development technology in the United States,the prospect of the shale oil development technology iteration in continental rift lake basins is proposed.It is suggested to continuously strengthen the overall three-dimensional development,improve the precision level of engineering technology,upgrade the engineering technical indicator system,accelerate the intelligent optimization of engineering equipment,explore the application of complex structure wells,form a whole-process integrated quality management system from design to implementation,and constantly innovate the concept and technology of shale oil development,so as to promote the realization of extensive,beneficial and high-quality development of shale oil in continental rift lake basins.
基金the National Natural Science Foundation of China(No.42206073)the National Key R&D Program of China(No.2021YFC3100600)+5 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110782)the China Post-doctoral Science Foundation(No.2021M703296)the Open Fund of the Key Laboratory of Tectonic Controlled Mineralization and Oil Reservoir of the Ministry of Natural Resources(No.gzck202101)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0206)the K.C.Wong Education Foundation(No.GJTD-2018-13)。
文摘The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To reveal the essence of western Paleo-Pacific subduction during the Triassic period,Well NK-1 in this block was selected for petrographic study,and published research data from other cooperative teams were compared.A double-cycle pattern of basic to neutral magmatic volcanism was established,and 36 lithological rhythmic layers and representative cryptoexplosive breccia facies and welded tuff bands were identified.Combined with a reanalysis of published geochronological data,geochemical elements,and isotope geochemistry,we found that the rock assemblages could be divided into an intermediate-acid dacite(DA)series(SiO_(2)>65%)and basaltic(BA)series(Co<40μg/g),which was formed during the early Late Triassic((218.6±3.2)–(217.9±3.5)Ma).BA exhibits obvious calc-alkaline island-arc magmatic properties:(^(87)Sr/^(86)Sr)_i ratio ranging 0.70377–0.71118(average:0.70645),^(147)Sm/^(144)Nd ratio ranging 0.119–0.193(average:0.168),and chondrite-normalized rare earth element(REE)curves being flat,while DA exhibits remarkable characteristics of subducted island-arc andesitic magma:(^(87)Sr/^(86)Sr)_i ratio(0.70939–0.71129;average:0.71035),εNd(t)value(-6.2–-4.8;average:-5.6)andε_(Hf)(t)value(-2.9–-1.7,average:-2.2)show obvious crust-mantle mixing characteristics.BA and DA reveal typical characteristics of island-arc magma systems and typeⅡenriched mantle(EM-Ⅱ)magma.BA magma was likely resulted from the process whereby the continental crust frontal accretionary wedge was driven by the Paleo-Pacific slab subduction into the deep and began to melt,resulting in a large amount of melt(fluid)joined the asthenosphere on the side of the continental margin.In contrast,DA magma was likely resulted from the process whereby the plate front was forced to bend with increasing subduction distance,which triggered the upwelling of the asthenosphere near the continent and subsequently led to the partial melting of the lithospheric mantle and lower crust due to continuous underplating.The lithospheric thinning environment in the study area at the end of Triassic created suitable conditions for the separation between the NB and SCC,which provided an opportunity for the formation of the early intracontinental rift during the later expansion of the South China Sea(SCS).
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
基金supported by the National Natural Science Foundation of China(U23B20155 and 42303004)China Postdoctoral Science Foundation(2023M730038)+1 种基金the Science and Technology Research Project for the China National Petroleum Corporation(2021DJ1802 and 2021YJCQ03)the National Postdoctoral Researcher Program of China(GZC20233111).
文摘The lower Cambrian Qiongzhusi(Є1 q)shale in the Sichuan Basin,formerly considered a source rock,recently achieved high gas production(7.388×105 m^(3)·d^(-1))from well Z201 in the Deyang-Anyue rift trough(DART),marking an exploration breakthrough of the world’s oldest industrial shale gas reser-voir.However,the shale gas enrichment mechanism within the DART is not fully understood.This study reviews the formation of the Qiongzhusi shale gas reservoirs within the DART by comparing them with cotemporaneous deposits outside the DART,and several findings are presented.The gas production interval was correlated with the main phase of the Cambrian explosion(lower Cambrian stage 3).In the early Cambrian ecosystem,dominant animals likely accelerated the settling rates of organic matter(OM)in the upper 1st member ofЄ_(1) q(Є_(1) q_(12))by feeding on small planktonic organisms and producing larger organic fragments and fecal pellets.High primary productivity and euxinic con-ditions contributed to OM enrichment in the lower 1st member ofЄ1 q(Є_(1) q_(11)).Additionally,shale reservoirs inside the DART demonstrated better properties than those outside in terms of thickness,brittle minerals,gas content,and porosity.In particular,the abundant OM pores inside the DART facil-itated shale gas enrichment,whereas the higher thermal maturity of the shales outside the DART pos-sibly led to the graphitization and collapse of some OM pores.Meanwhile,the overpressure of high-production wells inside the DART generally reflects better shale gas preservation,benefiting from the shale’s self-sealing nature,"upper capping and lower plugging"configuration,and limited faults and microfractures.Considering these insights,we introduced a"ternary enrichment"model for the Qiongzhusi shale gas.Although the current high gas production of Z201 was found at the reservoir 3,two additional reservoirs were identified with significant potential,thus suggesting a"multilayer stereoscopic development"strategy in future shale gas exploration within the DART.
文摘Due to limited data on the geochemical properties of natural gas,estimations are needed for the effective gas source rock in evaluating gas potential.However,the pronounced heterogeneity of mudstones in lacustrine successions complicates the prediction of the presence and geochemical characteristics of gas source rocks.In this paper,the Liaohe Subbasin of Northeast China is used as an example to construct a practical methodology for locating effective gas source rocks in typical lacustrine basins.Three types of gas source rocks,microbial,oil-type,and coal-type,were distinguished according to the different genetic types of their natural gas.A practical three-dimensional geological model was developed,refined,and applied to determine the spatial distribution of the mudstones in the Western Depression of the Liaohe Subbasin and to describe the geochemical characteristics(the abundance,type,and maturation levels of the organic matter).Application of the model in the subbasin indicates that the sedimentary facies have led to heterogeneity in the mudstones,particularly with respect to organic matter types.The effective gas source rock model constructed for the Western Depression shows that the upper sequence(SQ2)of the Fourth member(Mbr 4)of the Eocene Shahejie Formation(Fm)and the lower and middle sequences(SQ3 and SQ4)of the Third member(Mbr 3)form the principal gas-generating interval.The total volume of effective gas source rocks is estimated to be 586 km^(3).The effective microbial,oil-type,and coal-type gas source rocks are primarily found in the shallow western slope,the central sags,and the eastern slope of the Western Depression,respectively.This study provides a practical approach for more accurately identifying the occurrence and geochemical characteristics of effective natural gas source rocks,enabling a precise quantitative estimation of natural gas reserves.
文摘The Mesoproterozoic rifts are developed in the Ordos Basin located in the western margin of the North China Plate.Based on the latest 3D seismic data and previous research results,this study intends to discuss the zonal differential deformation characteristics and genetic mechanism of the Mesoproterozoic rifts in the Ordos Basin.NE-trending rifts are developed in the Mesoproterozoic in the south-central Ordos Basin,the main part of which are located near the western margin of the North China Plate.NNW-trending rifts are developed in the north of the basin,while NW-NNW rifts in the Mesoproterozoic in Hangjinqi area.The genetic mechanism of the Mesoproterozoic rifts is related to regional extensional stress field,plate boundary conditions and internal preexisting structures.The main extensional stress direction strikes NWW-SSE(120°)in the western margin of the North China Plate,based on the forward rift trend of the northern Mesoproterozoic.In Hangjinqi area,the reactivation of the existing NWtrending Wulansu fault and NW-NW-trending Daolao fault,results in dextral shear stress field.The boundary between the western margin of the North China Plate and its adjacent plates forms a nearly NS-trending preexisting basement tectonic belt,which intersects with the NWW-SSE(120°)extensional stress at an acute angle of 60°.Therefore,the western margin of the North China Plate is formed by oblique normal faults under oblique extension.Due to the long time span of Columbia Supercontinent breakup(1.8e1.6 Ga),the oblique rift in the south-central Ordos Basin is formed under the continuous oblique extension at the western margin of the North China Plate.
文摘Background: Vaccinations for animals are crucial for food production, animal welfare, public health, and animal health. They are an affordable way to stop animal sickness, increase food production efficiency, and lessen or stop the spread of zoonotic diseases to humans. Animal vaccines that are both safe and efficacious are vital to modern culture. The vaccine should induce a strong, protective and prolonged immune response against the antigenic factor. In order to achieve these goals, novel vaccination techniques and an efficient adjuvant are required to render the vaccine immunogenically protective and trigger a strong immune response. Aim: Our study aims to promote and enhance the immunogenicity against RVF virus disease through lyophilized inactivated RVF vaccine through induction of early cellular, high and prolonged humeral immunity in vaccinated animals using cabopol as stabilizer and Saponin or normal saline as a diluent at time of vaccination. Moreover, manufacturing of these vaccines is easy to be done. Results: The gained results revealed that RVF freeze-dried vaccine with Carbopol that reconstituted using Saponin elicited better immune response than that reconstituted using normal saline (NaCl). The cell mediated immune response as represented by lymphocyte blastogenesis and phagocytic activity were markedly increased with high levels when we used Saponin as a diluent than that in group vaccinated with vaccine diluted with NaCl, on the other side the humeral immune response in group vaccinated using the Saponin as diluent is more detected and stayed within the protective level till the end of 11<sup>th</sup> month post vaccination (1.5 TCID<sub>50</sub>) while the immune response induced after using normal saline as a diluent stayed within the protective level till the end of 10<sup>th</sup> month post vaccination (1.8 TCID<sub>50</sub>). Conclusion: The use of Saponin as a diluent for reconstitution of the freeze dried RVF vaccine is preferable than the use of normal saline enhancing both sheep cellular and humeral immune response.
文摘The West Congo Belt contains in its rocks of Neoproterozoic age from Nemba complex outcropping in the Moumba River. This West Congo belt is made up of a crustal segment of the Arcuaï-West Congo orogen which extends from southwest Gabon to the northeast of Angola. This study aims to constrain the geochemical signature Nemba complex of West Congo belt from the petrograhic and geochemical study on the whole rock. The petrographic data from this study show the Moumba metabasites are made up of amphibolites, metagabbros, epidotites and greenschists interstratified in the Eburnean metasediments and affected by mesozonal to epizonal metamorphism characterized by the retromorphosis of intermediate amphibolite facies minerals into greenschist facies. Whole-rock geochemical data indicate that these metabasites are continental flood basalts (CFB) of basic nature and transitional affinity emplaced in intraplate context. These continental flood basalts are generated from magma originating from a significantly enriched shallow mantle plume and this magma then contaminated by the continental crust during their ascent. The reconstruction of tectonic signature suggests that West Congo belt would result from closure of an ocean basin with subduction phenomena. This collision would be marked by the establishment of ophiolite complex. We show that this model is incompatible with the CFB nature of metabasites and the orogenic evolution of Neoproterozoic. It does not seem that we can evoke a genetic link with a subduction of oceanic crust, because the paleogeography of Neoproterozoic (Rodinia) is marked by intracontinental rifts linked to opening of Rodinia. We therefore suggest the non-existence of ophiolitic complex in western Congo belt and reject the collisional model published by certain authors. We confirm the currently available intracontinental orogen model.
基金supported by National Natural foundation of China (grants No. 41571013)China Geology Survey project (grants No. DD20160268)
文摘The north trending rifts in southern Tibet represent the E-W extension of the plateau and confirming the initial rifting age is key to the study of mechanics of these rifts. Pagri-Duoqing Co graben is located at southern end of Yadong-Gulu rift, where the late Cenozoic sediments is predominately composed of fluvio-lacustrine and moraine. Based on the sedimentary composition and structures, the fluviolacustrine could be divided into three facies, namely, lacustrine, lacustrine fan delta and alluvial fan. The presence of paleo-currents and conglomerate components and the provenance of the strata around the graben indicate that it was Tethys Himalaya and High Himalaya. Electron spin resonance(ESR) dating and paleo-magnetic dating suggest that the age of the strata ranges from ca. 1.2 Ma to ca. 8 Ma. Optically stimulated luminescence(OSL) dating showed that moraine in the graben mainly developed from around181-109 ka(late Middle Pleistocene). Combining previous data about the Late Cenozoic strata in other basins, it is suggested that 8-15 Ma may be the initial rifting time. Together with sediment distribution and drainage system, the sedimentary evolution of Pagri could be divided into four stages. The graben rifted at around 15-8 Ma due to the eastern graben-boundary fault resulting in the appearance of a paleolake.Following by a geologically quiet period about 8-2.5 Ma, the paleolake expanded from east to west at around 8-6 Ma reaching its maximum at ca. 6 Ma. Then, the graben was broken at about 2.5 Ma. At last,the development of the glacier separated the graben into two parts that were Pagri and Duoqing Co since the later stages of the Middle Pleistocene. The evolution process suggested that the former three stages were related to the tectonic movement, which determined the basement of the graben, while the last stage may have been influenced by glacial activity caused by climate change.