A new method for simulating the folding pathway of RNA secondary structure using the modified ant colony algorithmis proposed.For a given RNA sequence,the set of all possible stems is obtained and the energy of each s...A new method for simulating the folding pathway of RNA secondary structure using the modified ant colony algorithmis proposed.For a given RNA sequence,the set of all possible stems is obtained and the energy of each stem iscalculated and stored at the initial stage.Furthermore,a more realistic formula is used to compute the energy ofmulti-branch loop in the following iteration.Then a folding pathway is simulated,including such processes as constructionof the heuristic information,the rule of initializing the pheromone,the mechanism of choosing the initial andnext stem and the strategy of updating the pheromone between two different stems.Finally by testing RNA sequences withknown secondary structures from the public databases,we analyze the experimental data to select appropriate values forparameters.The measure indexes show that our procedure is more consistent with phylogenetically proven structures thansoftware RNAstructure sometimes and more effective than the standard Genetic Algorithm.展开更多
[Objective] To examine the grammar model based on lexical substring exac- tion for RNA secondary structure prediction. [Method] By introducing cloud model into stochastic grammar model, a machine learning algorithm su...[Objective] To examine the grammar model based on lexical substring exac- tion for RNA secondary structure prediction. [Method] By introducing cloud model into stochastic grammar model, a machine learning algorithm suitable for the lexicalized stochastic grammar model was proposed. The word grid mode was used to extract and divide RNA sequence to acquire lexical substring, and the cloud classifier was used to search the maximum probability of each lemma which was marked as a certain sec- ondary structure type. Then, the lemma information was introduced into the training stochastic grammar process as prior information, realizing the prediction on the sec- ondary structure of RNA, and the method was tested by experiment. [Result] The experimental results showed that the prediction accuracy and searching speed of stochastic grammar cloud model were significantly improved from the prediction with simple stochastic grammar. [Conclusion] This study laid the foundation for the wide application of stochastic grammar model for RNA secondary structure prediction.展开更多
We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG1397-139...We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG1397-1399 and GGC1274-1276 as translation initiation codons to produce normal 50-kDa ACAT1 and a novel enzymatically active 56-kDa isoform, respectively, with the latter being authentically present in human cells, including human monocyte- derived macrophages. In this work, we report that RNA secondary structures located in the vicinity of the GGC1274-1276 codon are required for production of the 56-kDa isoform. The effects of the three predicted stem-loops (nt 1255-1268, 1286-1342 and 1355-1384) were tested individually by transfecting expression plasmids into cells that contained the wild-type, deleted or mutant stem-loop sequences linked to a partial ACAT1 AUG open reading frame (ORF) or to the ORFs of other genes. The expression patterns were monitored by western blot analyses. We found that the upstream stem-loop1255-1268 from chromosome 7 and downstream stem-loop1286-1342 from chromosome 1 were needed for production of the 56-kDa isoform, whereas the last stem-loop135s-1384 from chromosome 1 was dispensable. The results of experi- ments using both monocistronic and bicistronic vectors with a stable hairpin showed that translation initiation from the GGC1274-1276 codon was mediated by an internal ribosome entry site (IRES). Further experiments revealed that translation initiation from the GGC1274-1276 codon requires the upstream AU-constituted RNA secondary structure and the downstream GC-rich structure. This mechanistic work provides further support for the biological significance of the chimeric nature of the human ACAT1 transcript.展开更多
A novel method for the prediction of RNA secondary structure was proposed based on the particle swarm optimization(PSO). PSO is known to be effective in solving many different types of optimization problems and know...A novel method for the prediction of RNA secondary structure was proposed based on the particle swarm optimization(PSO). PSO is known to be effective in solving many different types of optimization problems and known for being able to approximate the global optimal results in the solution space. We designed an efficient objective function according to the minimum free energy, the number of selected stems and the average length of selected stems. We calculated how many legal stems there were in the sequence, and selected some of them to obtain an optimal result using PSO in the right of the objective function. A method based on the improved particle swarm optimization(IPSO) was proposed to predict RNA secondary structure, which consisted of three stages. The first stage was applied to encoding the source sequences, and to exploring all the legal stems. Then, a set of encoded stems were created in order to prepare input data for the second stage. In the second stage, IPSO was responsible for structure selection. At last, the optimal result was obtained from the secondary structures selected via IPSO. Nine sequences from the comparative RNA website were selected for the evaluation of the proposed method. Compared with other six methods, the proposed method decreased the complexity and enhanced the sensitivity and specificity on the basis of the experiment results.展开更多
AIM To investigate the role of subgenotype specific RNA secondary structure in the compartment specific selection of hepatitis B virus(HBV)immune escape mutations.METHODS This study was based on the analysis of the sp...AIM To investigate the role of subgenotype specific RNA secondary structure in the compartment specific selection of hepatitis B virus(HBV)immune escape mutations.METHODS This study was based on the analysis of the specific observation of HBV subgenotype A1 in the serum/plasma,while subgenotype A2 with G145R mutation in the peripheral blood leukocytes(PBLs).Genetic variability found among the two subgenotypes was used for prediction and comparison of the full length pregenomic RNA(pgRNA)secondary structure and base pairings.RNA secondary structures were predicted for 37℃using the Vienna RNA fold server,using default parameters.Visualization and detailed analysis was done using RNA shapes program.RESULTS In this analysis,using similar algorithm and conditions,entirely different pgRNA secondary structures for subgenotype A1 and subgenotype A2 were predicted,suggesting different base pairing patterns within the two subgenotypes of genotype A,specifically,in the HBV genetic region encoding the major hydrophilic loop.We observed that for subgenotype A1 specific pgRNA,nucleotide 358U base paired with 1738A and nucleotide 587G base paired with 607C.However in sharp contrast,in subgenotype A2 specific pgRNA,nucleotide 358U was opposite to nucleotide 588G,while 587G was opposite to 359U,hence precluding correct base pairing and thereby lesser stability of the stem structure.When the nucleotides at 358U and 587G were replaced with 358C and 587A respectively(as observed specifically in the PBL associated A2 sequences),these nucleotides base paired correctly with 588G and 359U,respectively.CONCLUSION The results of this study show that compartment specific mutations are associated with HBV subgenotype specific alterations in base pairing of the pgRNA,leading to compartment specific selection and preponderance of specific HBV subgenotype with unique mutational pattern.展开更多
In early of 1960s, I was a graduate student studying on tRNA biochemistry. In the course of the research, the magnesium ions stabilized the tertiary structure of tRNA, resulting in its resistance to enzymatic degradat...In early of 1960s, I was a graduate student studying on tRNA biochemistry. In the course of the research, the magnesium ions stabilized the tertiary structure of tRNA, resulting in its resistance to enzymatic degradation was discovered independently. The experiment of deaminated (denatured) tRNA obtained from native tRNA was designed and conducted and further proved the validity of this finding. It was found that magnesium ions could stabilize the tertiary structure of the natrive tRNA but could not stabilize structure of the deaminated tRNA. In term of the methodology, this stabilization technique has been widely applied in sequencing analysis of RNA and has greatly promoted the progress in the study of primary structure of RNA. More importantly, the stabilization of the tertiary structure of RNA by magnesium ions plays a key role both in the processing of messenger RNAs and the ribozyme activity. After our first article in Chinese was published in 1963, a paper of Nishimura & Novelli came into our note. The received date of their paper was March 22 of 1963, only 4 days earlier than that of our first paper. Thus, we and Nishimura & Novelli made almost at the same time the earliest discovery of the role of magnesium ions on stabilizing the tertiary structure of the transfer RNA and thus resulted in resistance of tRNA degradation by enzymes. However, this discovery was not initially appreciated for a period of time but was finally “visualized” and proved by X-ray crystal structure of yeast phenylalanine tRNA, which has provided more accurate information on the geometry of the magnesium-binding sites in tRNA.展开更多
Secondary structures of RNAs are the basis of understanding their tertiary structures and functions and so their predictions are widely needed due to increasing discovery of noncoding RNAs.In the last decades,a lot of...Secondary structures of RNAs are the basis of understanding their tertiary structures and functions and so their predictions are widely needed due to increasing discovery of noncoding RNAs.In the last decades,a lot of methods have been proposed to predict RNA secondary structures but their accuracies encountered bottleneck.Here we present a method for RNA secondary structure prediction using direct coupling analysis and a remove-and-expand algorithm that shows better performance than four existing popular multiple-sequence methods.We further show that the results can also be used to improve the prediction accuracy of the single-sequence methods.展开更多
A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudokno...A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudoknots including the well known H-type pseudoknot were permitted to occur if reasonable.We have applied this approach to e number of RNA sequences.The prediction accuracies we obtained were higher than those in published papers.展开更多
The architecture of a BioAccel (internal code) chip for RNA secondary structure prediction is described in the letter. The system is based on a BioBus (internal code), whose distinguishing features are: Two separated ...The architecture of a BioAccel (internal code) chip for RNA secondary structure prediction is described in the letter. The system is based on a BioBus (internal code), whose distinguishing features are: Two separated control and data channels, and a slave-associated arbitration scheme. Two reference systems based on the AMBA AHB bus and Coreconnect bus are introduced to evaluate the performance of the system. The simulation results are attractive. The average communication bandwidth of the chip is increased at severalfold, and the read and write latencies are reduced about 40 percent.展开更多
The Shine-Dalgarno (SD) sequence, when present, is known to promote translation initiation in a bacterial cell. However, the thermodynamic stability of the messenger RNA (mRNA) through its secondary structures has an ...The Shine-Dalgarno (SD) sequence, when present, is known to promote translation initiation in a bacterial cell. However, the thermodynamic stability of the messenger RNA (mRNA) through its secondary structures has an inhibitory effect on the efficiency of translation. This poses the question of whether bacterial mRNAs with SD have low secondary structure formation or not. About 3500 protein-coding genes in <i>Rhodobacter sphaeroides</i> were analyzed and a sliding window analysis of the last 100 nucleotides of the 5’ UTR and the first 100 nucleotides of ORFs was performed using <i>RNAfold</i>, a software for RNA secondary structure analysis. It was shown that mRNAs with SD are less stable than those without SD for genes located on the primary chromosome, but not for the plasmid encoded genes. Furthermore, mRNA stability is similar for genes within each chromosome except those encoded by the accessory chromosome (second chromosome). Results highlight the possible contribution of other factors like replicon-specific nucleotide composition (GC content), codon bias, and protein stability in determining the efficiency of translation initiation in both SD-dependent and SD-independent translation systems.展开更多
Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some st...Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some structure prediction models have been developed in recent years. In this review, the progress in computational models for RNA structure prediction is introduced and the distinguishing features of many outstanding algorithms are discussed, emphasizing three- dimensional (3D) structure prediction. A promising coarse-grained model for predicting RNA 3D structure, stability and salt effect is also introduced briefly. Finally, we discuss the major challenges in the RNA 3D structure modeling.展开更多
The attenuated vaccine strains of CSFV have a 12-nucleotides (nt) insertion in the 3'-UTR of genome as compared to that of CSFV virulent strains. In this study, we found a distinct heterogeneity in the 3'-UTR of a...The attenuated vaccine strains of CSFV have a 12-nucleotides (nt) insertion in the 3'-UTR of genome as compared to that of CSFV virulent strains. In this study, we found a distinct heterogeneity in the 3'-UTR of attenuated Thiverval and HCLV strains. The longest 3'-UTR of Thiverval strain was 259 base pairs (bp) with a 32-nt insertion, the shortest 3'-UTR had only 233 bp with a 6-nt insertion. The longest 3'-UTR of HCLV strain was 244 bp with a 17-nt insertion and the shortest 3' UTR was 235 bp with a 8-nt insertion. Compared with the published sequences of 3'-UTR of vaccine and virulent strains, the 3'-UTR of CSFV vaccine strains have two variable regions where insertion among the different vaccine strains were frequently found. The first is located between the second conservative TALk codon and the start of T-rich region where we found the variable length insertion in the same vaccine strain Thiveral or HCLV and the second is located between the end of T-rich region and the front of GAA eodon, however, a 4-nt deletion was found in this region in the virulent Shimen strain. These two regions may represent the "hot spot" for mutation. Modeling the secondary structures of the 3'-UTR suggests that the T-rich insertion could result in the change of structure and free energy, thus affecting the stability of the 3'-UTR structure. These findings will help to understand the mechanism of attenuated vaccines and improve vaccine safety, stability, and efficacy.展开更多
RNA二级结构预测是计算分子生物学中的一个重要领域.本文介绍了RNA二级结构的预测方法,包括该问题的数学模型、主要算法思想以及每种算法对应的软件.在tRNA和RNase P RNA数据库中随机选取了几组样例对目前主要的7种软件进行测试,同时对...RNA二级结构预测是计算分子生物学中的一个重要领域.本文介绍了RNA二级结构的预测方法,包括该问题的数学模型、主要算法思想以及每种算法对应的软件.在tRNA和RNase P RNA数据库中随机选取了几组样例对目前主要的7种软件进行测试,同时对每种软件的优缺点进行了详细比较.实验证明,当存在同源序列时,Pfold的效果优于其它软件.最后,在总结分析现有算法的基础上探讨了该领域进一步的研究方向.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60971089)the Specialized Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20070183057)
文摘A new method for simulating the folding pathway of RNA secondary structure using the modified ant colony algorithmis proposed.For a given RNA sequence,the set of all possible stems is obtained and the energy of each stem iscalculated and stored at the initial stage.Furthermore,a more realistic formula is used to compute the energy ofmulti-branch loop in the following iteration.Then a folding pathway is simulated,including such processes as constructionof the heuristic information,the rule of initializing the pheromone,the mechanism of choosing the initial andnext stem and the strategy of updating the pheromone between two different stems.Finally by testing RNA sequences withknown secondary structures from the public databases,we analyze the experimental data to select appropriate values forparameters.The measure indexes show that our procedure is more consistent with phylogenetically proven structures thansoftware RNAstructure sometimes and more effective than the standard Genetic Algorithm.
基金Supported by the Science Foundation of Hengyang Normal University of China(09A36)~~
文摘[Objective] To examine the grammar model based on lexical substring exac- tion for RNA secondary structure prediction. [Method] By introducing cloud model into stochastic grammar model, a machine learning algorithm suitable for the lexicalized stochastic grammar model was proposed. The word grid mode was used to extract and divide RNA sequence to acquire lexical substring, and the cloud classifier was used to search the maximum probability of each lemma which was marked as a certain sec- ondary structure type. Then, the lemma information was introduced into the training stochastic grammar process as prior information, realizing the prediction on the sec- ondary structure of RNA, and the method was tested by experiment. [Result] The experimental results showed that the prediction accuracy and searching speed of stochastic grammar cloud model were significantly improved from the prediction with simple stochastic grammar. [Conclusion] This study laid the foundation for the wide application of stochastic grammar model for RNA secondary structure prediction.
文摘We have previously reported that the human ACAT1 gene produces a chimeric mRNA through the interchromosomal processing of two discontinuous RNAs transcribed from chromosomes 1 and 7. The chimeric mRNA uses AUG1397-1399 and GGC1274-1276 as translation initiation codons to produce normal 50-kDa ACAT1 and a novel enzymatically active 56-kDa isoform, respectively, with the latter being authentically present in human cells, including human monocyte- derived macrophages. In this work, we report that RNA secondary structures located in the vicinity of the GGC1274-1276 codon are required for production of the 56-kDa isoform. The effects of the three predicted stem-loops (nt 1255-1268, 1286-1342 and 1355-1384) were tested individually by transfecting expression plasmids into cells that contained the wild-type, deleted or mutant stem-loop sequences linked to a partial ACAT1 AUG open reading frame (ORF) or to the ORFs of other genes. The expression patterns were monitored by western blot analyses. We found that the upstream stem-loop1255-1268 from chromosome 7 and downstream stem-loop1286-1342 from chromosome 1 were needed for production of the 56-kDa isoform, whereas the last stem-loop135s-1384 from chromosome 1 was dispensable. The results of experi- ments using both monocistronic and bicistronic vectors with a stable hairpin showed that translation initiation from the GGC1274-1276 codon was mediated by an internal ribosome entry site (IRES). Further experiments revealed that translation initiation from the GGC1274-1276 codon requires the upstream AU-constituted RNA secondary structure and the downstream GC-rich structure. This mechanistic work provides further support for the biological significance of the chimeric nature of the human ACAT1 transcript.
基金Supported by the National Natural Science Foundation of China(No60971089)
文摘A novel method for the prediction of RNA secondary structure was proposed based on the particle swarm optimization(PSO). PSO is known to be effective in solving many different types of optimization problems and known for being able to approximate the global optimal results in the solution space. We designed an efficient objective function according to the minimum free energy, the number of selected stems and the average length of selected stems. We calculated how many legal stems there were in the sequence, and selected some of them to obtain an optimal result using PSO in the right of the objective function. A method based on the improved particle swarm optimization(IPSO) was proposed to predict RNA secondary structure, which consisted of three stages. The first stage was applied to encoding the source sequences, and to exploring all the legal stems. Then, a set of encoded stems were created in order to prepare input data for the second stage. In the second stage, IPSO was responsible for structure selection. At last, the optimal result was obtained from the secondary structures selected via IPSO. Nine sequences from the comparative RNA website were selected for the evaluation of the proposed method. Compared with other six methods, the proposed method decreased the complexity and enhanced the sensitivity and specificity on the basis of the experiment results.
基金Supported by Fellowship and funds from University Grants Commission(UGC)Min.of Human Resource and Development,Govt.of India and Defence Research&Development Organi-zation(DRDO)(DRDO)+2 种基金Min.of Defence,Govt.of India(to Sibnarayan Datta)Indian Council of Medical Research(ICMR)Ministry of Health and Family Welfare(MoH FW)(to Runu Chakravarty)
文摘AIM To investigate the role of subgenotype specific RNA secondary structure in the compartment specific selection of hepatitis B virus(HBV)immune escape mutations.METHODS This study was based on the analysis of the specific observation of HBV subgenotype A1 in the serum/plasma,while subgenotype A2 with G145R mutation in the peripheral blood leukocytes(PBLs).Genetic variability found among the two subgenotypes was used for prediction and comparison of the full length pregenomic RNA(pgRNA)secondary structure and base pairings.RNA secondary structures were predicted for 37℃using the Vienna RNA fold server,using default parameters.Visualization and detailed analysis was done using RNA shapes program.RESULTS In this analysis,using similar algorithm and conditions,entirely different pgRNA secondary structures for subgenotype A1 and subgenotype A2 were predicted,suggesting different base pairing patterns within the two subgenotypes of genotype A,specifically,in the HBV genetic region encoding the major hydrophilic loop.We observed that for subgenotype A1 specific pgRNA,nucleotide 358U base paired with 1738A and nucleotide 587G base paired with 607C.However in sharp contrast,in subgenotype A2 specific pgRNA,nucleotide 358U was opposite to nucleotide 588G,while 587G was opposite to 359U,hence precluding correct base pairing and thereby lesser stability of the stem structure.When the nucleotides at 358U and 587G were replaced with 358C and 587A respectively(as observed specifically in the PBL associated A2 sequences),these nucleotides base paired correctly with 588G and 359U,respectively.CONCLUSION The results of this study show that compartment specific mutations are associated with HBV subgenotype specific alterations in base pairing of the pgRNA,leading to compartment specific selection and preponderance of specific HBV subgenotype with unique mutational pattern.
文摘In early of 1960s, I was a graduate student studying on tRNA biochemistry. In the course of the research, the magnesium ions stabilized the tertiary structure of tRNA, resulting in its resistance to enzymatic degradation was discovered independently. The experiment of deaminated (denatured) tRNA obtained from native tRNA was designed and conducted and further proved the validity of this finding. It was found that magnesium ions could stabilize the tertiary structure of the natrive tRNA but could not stabilize structure of the deaminated tRNA. In term of the methodology, this stabilization technique has been widely applied in sequencing analysis of RNA and has greatly promoted the progress in the study of primary structure of RNA. More importantly, the stabilization of the tertiary structure of RNA by magnesium ions plays a key role both in the processing of messenger RNAs and the ribozyme activity. After our first article in Chinese was published in 1963, a paper of Nishimura & Novelli came into our note. The received date of their paper was March 22 of 1963, only 4 days earlier than that of our first paper. Thus, we and Nishimura & Novelli made almost at the same time the earliest discovery of the role of magnesium ions on stabilizing the tertiary structure of the transfer RNA and thus resulted in resistance of tRNA degradation by enzymes. However, this discovery was not initially appreciated for a period of time but was finally “visualized” and proved by X-ray crystal structure of yeast phenylalanine tRNA, which has provided more accurate information on the geometry of the magnesium-binding sites in tRNA.
基金Project supported by the National Natural Science Foundation of China(Grant No.31570722).
文摘Secondary structures of RNAs are the basis of understanding their tertiary structures and functions and so their predictions are widely needed due to increasing discovery of noncoding RNAs.In the last decades,a lot of methods have been proposed to predict RNA secondary structures but their accuracies encountered bottleneck.Here we present a method for RNA secondary structure prediction using direct coupling analysis and a remove-and-expand algorithm that shows better performance than four existing popular multiple-sequence methods.We further show that the results can also be used to improve the prediction accuracy of the single-sequence methods.
文摘A simple stepwise folding process has been developed to simulate RNA secondary structure formation.Modifications for the energy parameters of various loops were included in the program.Five possible types of pseudoknots including the well known H-type pseudoknot were permitted to occur if reasonable.We have applied this approach to e number of RNA sequences.The prediction accuracies we obtained were higher than those in published papers.
基金Supported by the National Natrual Science Foundation of China (No.60373044) and Knowl-edge Innovative Project of CAS (No.KSCX2-SW-233).
文摘The architecture of a BioAccel (internal code) chip for RNA secondary structure prediction is described in the letter. The system is based on a BioBus (internal code), whose distinguishing features are: Two separated control and data channels, and a slave-associated arbitration scheme. Two reference systems based on the AMBA AHB bus and Coreconnect bus are introduced to evaluate the performance of the system. The simulation results are attractive. The average communication bandwidth of the chip is increased at severalfold, and the read and write latencies are reduced about 40 percent.
文摘The Shine-Dalgarno (SD) sequence, when present, is known to promote translation initiation in a bacterial cell. However, the thermodynamic stability of the messenger RNA (mRNA) through its secondary structures has an inhibitory effect on the efficiency of translation. This poses the question of whether bacterial mRNAs with SD have low secondary structure formation or not. About 3500 protein-coding genes in <i>Rhodobacter sphaeroides</i> were analyzed and a sliding window analysis of the last 100 nucleotides of the 5’ UTR and the first 100 nucleotides of ORFs was performed using <i>RNAfold</i>, a software for RNA secondary structure analysis. It was shown that mRNAs with SD are less stable than those without SD for genes located on the primary chromosome, but not for the plasmid encoded genes. Furthermore, mRNA stability is similar for genes within each chromosome except those encoded by the accessory chromosome (second chromosome). Results highlight the possible contribution of other factors like replicon-specific nucleotide composition (GC content), codon bias, and protein stability in determining the efficiency of translation initiation in both SD-dependent and SD-independent translation systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074191,11175132,and 11374234)the National Basic Research Programof China(Grant No.2011CB933600)the Program for New Century Excellent Talents of China(Grant No.NCET 08-0408)
文摘Many recent exciting discoveries have revealed the versatility of RNAs and their importance in a variety of cellular functions which are strongly coupled to RNA structures. To understand the functions of RNAs, some structure prediction models have been developed in recent years. In this review, the progress in computational models for RNA structure prediction is introduced and the distinguishing features of many outstanding algorithms are discussed, emphasizing three- dimensional (3D) structure prediction. A promising coarse-grained model for predicting RNA 3D structure, stability and salt effect is also introduced briefly. Finally, we discuss the major challenges in the RNA 3D structure modeling.
基金supported by the National Natural Science Foundation of China (30571377)the National High-Tech R&D Program of China (863 Program,2006AA10A204)
文摘The attenuated vaccine strains of CSFV have a 12-nucleotides (nt) insertion in the 3'-UTR of genome as compared to that of CSFV virulent strains. In this study, we found a distinct heterogeneity in the 3'-UTR of attenuated Thiverval and HCLV strains. The longest 3'-UTR of Thiverval strain was 259 base pairs (bp) with a 32-nt insertion, the shortest 3'-UTR had only 233 bp with a 6-nt insertion. The longest 3'-UTR of HCLV strain was 244 bp with a 17-nt insertion and the shortest 3' UTR was 235 bp with a 8-nt insertion. Compared with the published sequences of 3'-UTR of vaccine and virulent strains, the 3'-UTR of CSFV vaccine strains have two variable regions where insertion among the different vaccine strains were frequently found. The first is located between the second conservative TALk codon and the start of T-rich region where we found the variable length insertion in the same vaccine strain Thiveral or HCLV and the second is located between the end of T-rich region and the front of GAA eodon, however, a 4-nt deletion was found in this region in the virulent Shimen strain. These two regions may represent the "hot spot" for mutation. Modeling the secondary structures of the 3'-UTR suggests that the T-rich insertion could result in the change of structure and free energy, thus affecting the stability of the 3'-UTR structure. These findings will help to understand the mechanism of attenuated vaccines and improve vaccine safety, stability, and efficacy.
文摘RNA二级结构预测是计算分子生物学中的一个重要领域.本文介绍了RNA二级结构的预测方法,包括该问题的数学模型、主要算法思想以及每种算法对应的软件.在tRNA和RNase P RNA数据库中随机选取了几组样例对目前主要的7种软件进行测试,同时对每种软件的优缺点进行了详细比较.实验证明,当存在同源序列时,Pfold的效果优于其它软件.最后,在总结分析现有算法的基础上探讨了该领域进一步的研究方向.