Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Sinc...Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and ...Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.展开更多
Background:Hypoplastic left heart syndrome(HLHS)is one of the most challenging congenital heart diseases in clinical treatment.In cardiac tissues,resident macrophages fulfill critical functions in maintaining a stable...Background:Hypoplastic left heart syndrome(HLHS)is one of the most challenging congenital heart diseases in clinical treatment.In cardiac tissues,resident macrophages fulfill critical functions in maintaining a stable cardiac state and have strong regenerative capacity and organ specificity.However,the molecular mechanisms of macro-phages in HLHS remained unclear.Methods:Single-nucleus RNA sequencing(snRNA-seq)data of HLHS and healthy control(donors)samples obtained from the Gene Expression Omnibus(GEO)database were normalized and clustered using the Seurat package.The“FindMarkers”function was used to screen differentially expressed genes(DEGs)between the HLHS and donor groups and to analyze the functional enrichment of the set of genes of interest.Finally,cell-cell communication,pseudotime,and single-cell regulatory network inference and cluster-ing(SCENIC)analyses were used to study the mechanisms of macrophages in HLHS.Results:Based on the snRNA-seq data of HLHS and donors,we identified a total of 9 cell clusters,among which the proportion of macrophages was significantly less in the HLHS group than in the control group.Subdivision of macrophage subpopulations(Macrophages 1,2,and 3)showed that Macrophages 1 was mainly involved in nervous system development,angiogenesis,and apoptotic processes.In addition,analysis of communication between Macro-phages 1 and cardiomyocytes revealed that ligand-acceptor pairs such as GAS6/AXL,IL6,IGF1,THY1,and L1CAM were present only in the donor group.Finally,pesudotime and SCENIC analyses demonstrated that FOXO3 and ELF2 played a critical role for Macrophages 1 to maintain cardiac function in patients with HLHS.Conclusion:Our study improved the current understanding of the molecular mechanisms of macrophage devel-opment in HLHS,showing that manipulating the regulatory role of macrophages in the heart can be a novel treat-ment for HLHS.展开更多
High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat ...High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.展开更多
Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air duri...Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air during the low tide and produces large quantities of mucus as an external covering. The relation between low tide and mucus secretion is still unclear, and what is the role of mucin during arial exposure is not yet investigated. This study hypothesised that the mucin genes in A. veratra would have significantly high expression in response to aerial exposure. Therefore, the aim of current study was to examine and analyses the response of A. veratra mucins in response to an experiment involving three hours of aerial exposure. To achieve this, aim the RNA-sequencing and bioinformatics analyses were used to examine the expression profile of A. veratra mucin genes in response to aerial exposure. The generated results have shown that, Mucin4-like and mucin5B-like were up-regulated in response to the three hours of aerial exposure in A. veratra. This finding shows a significant role of mucin5B-like and mucin4-like genes in response to air stress at low tide. The data generated from this study could be used in conjunction with future mucin gene studies of sea anemones and other cnidarians to compare A. veratra mucin gene expression results across time, and to extend our understanding of mucin stress response in this phylum.展开更多
Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is imp...Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.展开更多
Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and parti...Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and participates in the modulation of targeted cells and their microenvironments within organs.However,the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences.Single-cell RNA sequencing(sc RNA-seq)has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells.Sc RNA-seq applications has been summarized on three typical organs(brain,liver,kidney),and two representative immune-and tumor related health problems.The everincreasing role of sc RNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities.In this review,we propose utilizing sc RNAseq to more effectively capture the subtle and complex effects of food chemicals,and how they may lead to health problems at single-cell resolution.This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level.展开更多
Previous studies have found that deficiency in nuclear receptor-related factor 1(Nurr1),which participates in the development,differentiation,survival,and degeneration of dopaminergic neurons,is associated with Parkin...Previous studies have found that deficiency in nuclear receptor-related factor 1(Nurr1),which participates in the development,differentiation,survival,and degeneration of dopaminergic neurons,is associated with Parkinson s disease,but the mechanism of action is perplexing.Here,we first asce rtained the repercussion of knocking down Nurr1 by pe rforming liquid chromatography coupled with tandem mass spectrometry.We found that 231 genes were highly expressed in dopaminergic neurons with Nurr1 deficiency,14 of which were linked to the Parkinson’s disease pathway based on Kyoto Encyclopedia of Genes and Genomes analysis.To better understand how Nurr1 deficiency autonomously invokes the decline of dopaminergic neurons and elicits Parkinson’s disease symptoms,we performed single-nuclei RNA sequencing in a Nurr1 LV-shRNA mouse model.The results revealed cellular heterogeneity in the substantia nigra and a number of activated genes,the preponderance of which encode components of the major histocompatibility Ⅱ complex.Cd74,H2-Ab1,H2-Aα,H2-Eb1,Lyz2,Mrc1,Slc6α3,Slc47α1,Ms4α4b,and Ptprc2 were the top 10 diffe rentially expressed genes.Immunofluorescence staining showed that,after Nurr1knockdown,the number of CD74-immunoreactive cells in mouse brain tissue was markedly increased.In addition,Cd74 expression was increased in a mouse model of Parkinson’s disease induced by treatment with 6-hydroxydopamine.Ta ken togethe r,our res ults suggest that Nurr1 deficiency results in an increase in Cd74 expression,thereby leading to the destruction of dopaminergic neuro ns.These findings provide a potential therapeutic target for the treatment of Parkinson’s disease.展开更多
The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-se...The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-seq methods have evolved,and components of the TIME have been deciphered with high resolution.In this review,we first introduced the principle of scRNA-seq and compared different sequencing approaches.Novel cell types in the TIME,a continuous transitional state,and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer.Thus,we concluded novel cell clusters of cancerassociated fibroblasts(CAFs),T cells,tumour-associated macrophages(TAMs)and dendritic cells(DCs)discovered after the application of scRNA-seq in TIME.We also proposed the development of TAMs and exhausted T cells,as well as the possible targets to interrupt the process.In addition,the therapeutic interventions based on cellular interactions in TIME were also summarized.For decades,quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer.Summarizing the current findings,we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy,which can subsequently be implemented in the clinic.Finally,we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.展开更多
The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound...The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound healing depends on the proliferation and differentiation of limbal stem cells(LSCs),a cell population that resides at the limbus in a highly regulated niche.Dysfunction of LSCs or their niche can cause limbal stem cell deficiency,a disease that is manifested by failed epithelial wound healing or even blindness.Nevertheless,compared to stem cells in other tissues,little is known about the LSCs and their niche.With the advent of single-cell RNA sequencing,our understanding of LSC characteristics and their microenvironment has grown considerably.In this review,we summarized the current findings from single-cell studies in the field of cornea research and focused on important advancements driven by this technology,including the heterogeneity of the LSC population,novel LSC markers and regulation of the LSC niche,which will provide a reference for clinical issues such as corneal epithelial wound healing,ocular surface reconstruction and interventions for related diseases.展开更多
Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell reso...Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells’ expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancerassociated fibroblasts(CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-tomesenchymal transition(EMT) model and the mechanism of drug resistance, as well as its clinical value.展开更多
Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenome...Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenomenon.We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells(NPCs)in autoprotection against DILI,using acetaminophen(APAP)as a model drug.Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice,followed by a higher dose in a secondary challenge.NPC subsets and dynamic changes were identified in the APAP(hepatotoxicity-sensitive)and APAP-resistant(hepatotoxicity-resistant)groups.A chemokine(C-C motif)ligand 2^(+)endothelial cell subset almost disappeared in the APAP-resistant group,and an R-spondin 3^(+)endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection.Moreover,the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation.DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group.In addition,the natural killer cell subsets NK-3 and NK-4 and the Sca-1^(-)CD62L^(+)natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways.Furthermore,macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity.Overall,this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.展开更多
BACKGROUND Accumulating evidence suggests that the maxillary process,to which cranial crest cells migrate,is essential to tooth development.Emerging studies indicate that Cd271 plays an essential role in odontogenesis...BACKGROUND Accumulating evidence suggests that the maxillary process,to which cranial crest cells migrate,is essential to tooth development.Emerging studies indicate that Cd271 plays an essential role in odontogenesis.However,the underlying mechanisms have yet to be elucidated.AIM To establish the functionally heterogeneous population in the maxillary process,elucidate the effects of Cd271 deficiency on gene expression differences.METHODS p75NTR knockout(Cd271-/-)mice(from American Jackson laboratory)were used to collect the maxillofacial process tissue of p75NTR knockout mice,and the wildtype maxillofacial process of the same pregnant mouse wild was used as control.After single cell suspension,the cDNA was prepared by loading the single cell suspension into the 10x Genomics Chromium system to be sequenced by NovaSeq6000 sequencing system.Finally,the sequencing data in Fastq format were obtained.The FastQC software is used to evaluate the quality of data and CellRanger analyzed the data.The gene expression matrix is read by R software,and Seurat is used to control and standardize the data,reduce the dimension and cluster.We search for marker genes for subgroup annotation by consulting literature and database;explore the effect of p75NTR knockout on mesenchymal stem cells(MSCs)gene expression and cell proportion by cell subgrouping,differential gene analysis,enrichment analysis and protein-protein interaction network analysis;understand the interaction between MSCs cells and the differentiation trajectory and gene change characteristics of p75NTR knockout MSCs by cell communication analysis and pseudo-time analysis.Last we verified the findings single cell sequencing in vitro.RESULTS We identified 21 cell clusters,and we re-clustered these into three subclusters.Importantly,we revealed the cell–cell communication networks between clusters.We clarified that Cd271 was significantly associated with the regulation of mineralization.CONCLUSION This study provides comprehensive mechanistic insights into the maxillary-process-derived MSCs and demonstrates that Cd271 is significantly associated with the odontogenesis in mesenchymal populations.展开更多
Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from fo...Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from four D.salina strains via cell biological,physiological,and biochemical methods.High-throughput sequencing of small RNAs(sRNAs)of DS-CN1 in culture medium containing 3.42-mol/L NaCl(SS group)or 0.05-mol/L NaCl(CO group)was performed on the BGISEQ-500 platform.The annotation and sequences of D.salina sRNAs were profiled.Altogether,44 novel salt stress-responsive microRNAs(miRNAs)with a relatively high C content,with the majority of them being 24 nt in length,were identified and characterized in DS-CN1.Twenty-one differentially expressed miRNAs(DEMs)in SS and CO were screened via bioinformatic analysis.A total of 319 putative salt stress-related genes targeted(104 overlapping genes)by novel miRNAs in this alga were screened based on our previous transcriptome sequencing research.Furthermore,these target genes were classified and enriched by GO and KEGG pathway analysis.Moreover,5 novel DEMs(dsa-mir3,dsa-mir16,dsa-mir17,and dsa-mir26 were significantly upregulated,and dsa-mir40 was significantly downregulated)and their corresponding 10 target genes involved in the 6 significantly enriched metabolic pathways were verified by quantitative real-time PCR.Next,their regulatory relationships were comprehensively analyzed.Lastly,a unique salt stress response metabolic network was constructed based on the novel DEM-target gene pairs.Taken together,our results suggest that 44 novel salt stress-responsive microRNAs were identified,and 4 of them might play important roles in D.salina upon salinity stress and contribute to clarify its distinctive halophilic feature.Our study will shed light on the regulatory mechanisms of salt stress responses.展开更多
文摘Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
基金supported by National Key Research and Development Program of China(2022YFD1302201,2023YFF1000904)the National Natural Science Foundation of China(32072806,32372970)+2 种基金Key Technologies Demonstration of Animal Husbandry in Shaanxi Province(20221086,20230978)Inner Mongolia Autonomous Region Competition Leaders(2022JBGS0025)Xinjian Ugur Autonouous Region Scientific Research and Innovation Platform Construction Project“State Key Laboratory of Genetic Improvement and Germplasm”。
文摘Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.
基金supported by Jiangsu Province Postgraduate Practice Innovation Program(SJCX22_0766)Natural Science Foundation of Jiangsu Province(BK20231378)Leader of Geriatric Clinical Technology Application Research Project of Jiangsu Provincial Health Commission(LR2022002)。
文摘Background:Hypoplastic left heart syndrome(HLHS)is one of the most challenging congenital heart diseases in clinical treatment.In cardiac tissues,resident macrophages fulfill critical functions in maintaining a stable cardiac state and have strong regenerative capacity and organ specificity.However,the molecular mechanisms of macro-phages in HLHS remained unclear.Methods:Single-nucleus RNA sequencing(snRNA-seq)data of HLHS and healthy control(donors)samples obtained from the Gene Expression Omnibus(GEO)database were normalized and clustered using the Seurat package.The“FindMarkers”function was used to screen differentially expressed genes(DEGs)between the HLHS and donor groups and to analyze the functional enrichment of the set of genes of interest.Finally,cell-cell communication,pseudotime,and single-cell regulatory network inference and cluster-ing(SCENIC)analyses were used to study the mechanisms of macrophages in HLHS.Results:Based on the snRNA-seq data of HLHS and donors,we identified a total of 9 cell clusters,among which the proportion of macrophages was significantly less in the HLHS group than in the control group.Subdivision of macrophage subpopulations(Macrophages 1,2,and 3)showed that Macrophages 1 was mainly involved in nervous system development,angiogenesis,and apoptotic processes.In addition,analysis of communication between Macro-phages 1 and cardiomyocytes revealed that ligand-acceptor pairs such as GAS6/AXL,IL6,IGF1,THY1,and L1CAM were present only in the donor group.Finally,pesudotime and SCENIC analyses demonstrated that FOXO3 and ELF2 played a critical role for Macrophages 1 to maintain cardiac function in patients with HLHS.Conclusion:Our study improved the current understanding of the molecular mechanisms of macrophage devel-opment in HLHS,showing that manipulating the regulatory role of macrophages in the heart can be a novel treat-ment for HLHS.
基金supported by the National Natural Science Foundation of China,No.82371051(to DW)the Natural Science Foundation of Beijing,No.7212092(to DW)+1 种基金the Capital’s Funds for Health Improvement and Research,No.2022-2-5041(to DW)the Fund of Science and Technology Development of Beijing Rehabilitation Hospital,Capital Medical University,No.2021R-001(to YL).
文摘High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies.
文摘Mucin genes are the main component of mucus. The sea anemone species, Aulactinia veratra (Phylum Cnidaria) contains different types of mucin genes. In the intertidal zone, A. veratra is found to be exposed to air during the low tide and produces large quantities of mucus as an external covering. The relation between low tide and mucus secretion is still unclear, and what is the role of mucin during arial exposure is not yet investigated. This study hypothesised that the mucin genes in A. veratra would have significantly high expression in response to aerial exposure. Therefore, the aim of current study was to examine and analyses the response of A. veratra mucins in response to an experiment involving three hours of aerial exposure. To achieve this, aim the RNA-sequencing and bioinformatics analyses were used to examine the expression profile of A. veratra mucin genes in response to aerial exposure. The generated results have shown that, Mucin4-like and mucin5B-like were up-regulated in response to the three hours of aerial exposure in A. veratra. This finding shows a significant role of mucin5B-like and mucin4-like genes in response to air stress at low tide. The data generated from this study could be used in conjunction with future mucin gene studies of sea anemones and other cnidarians to compare A. veratra mucin gene expression results across time, and to extend our understanding of mucin stress response in this phylum.
基金supported by the mutton sheep industry technology system construction project of Shaanxi Province(NYKJ-2021-YL(XN)43).
文摘Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.
基金funded by the National Natural Science Foundation of China(32170495)the Emergency Project for Risk Assessment of Areca Nut(Key Project of Department of Agriculture and Rural Affairs of Hainan Province&Wanning Municipal People’s Government)。
文摘Due to the complex natures of dietary food components,it is difficult to elucidate how the compounds affect host health.Dietary food often selectively presents its mechanism of action on different cell types,and participates in the modulation of targeted cells and their microenvironments within organs.However,the limitations of traditional in vitro assays or in vivo animal experiments cannot comprehensively examine cellular heterogeneity and the tissue-biased influences.Single-cell RNA sequencing(sc RNA-seq)has emerged as an indispensable methodology to decompose tissues into different cell types for the demonstration of transcriptional profiles of individual cells.Sc RNA-seq applications has been summarized on three typical organs(brain,liver,kidney),and two representative immune-and tumor related health problems.The everincreasing role of sc RNA-seq in dietary food research with further improvement can provide sub-cellular information and the coupling between other cellular modalities.In this review,we propose utilizing sc RNAseq to more effectively capture the subtle and complex effects of food chemicals,and how they may lead to health problems at single-cell resolution.This novel technique will be valuable to elucidate the underlying mechanism of both the health benefits of food nutrients and the detrimental consequences food toxicants at the cellular level.
基金supported by the National Natural Science Foundation of China,No. 81971006 (to DSG)。
文摘Previous studies have found that deficiency in nuclear receptor-related factor 1(Nurr1),which participates in the development,differentiation,survival,and degeneration of dopaminergic neurons,is associated with Parkinson s disease,but the mechanism of action is perplexing.Here,we first asce rtained the repercussion of knocking down Nurr1 by pe rforming liquid chromatography coupled with tandem mass spectrometry.We found that 231 genes were highly expressed in dopaminergic neurons with Nurr1 deficiency,14 of which were linked to the Parkinson’s disease pathway based on Kyoto Encyclopedia of Genes and Genomes analysis.To better understand how Nurr1 deficiency autonomously invokes the decline of dopaminergic neurons and elicits Parkinson’s disease symptoms,we performed single-nuclei RNA sequencing in a Nurr1 LV-shRNA mouse model.The results revealed cellular heterogeneity in the substantia nigra and a number of activated genes,the preponderance of which encode components of the major histocompatibility Ⅱ complex.Cd74,H2-Ab1,H2-Aα,H2-Eb1,Lyz2,Mrc1,Slc6α3,Slc47α1,Ms4α4b,and Ptprc2 were the top 10 diffe rentially expressed genes.Immunofluorescence staining showed that,after Nurr1knockdown,the number of CD74-immunoreactive cells in mouse brain tissue was markedly increased.In addition,Cd74 expression was increased in a mouse model of Parkinson’s disease induced by treatment with 6-hydroxydopamine.Ta ken togethe r,our res ults suggest that Nurr1 deficiency results in an increase in Cd74 expression,thereby leading to the destruction of dopaminergic neuro ns.These findings provide a potential therapeutic target for the treatment of Parkinson’s disease.
基金supported by the National Key Research Development Program of China(2021YFA1301203)the National Natural Science Foundation of China(82103031,82103918,81973408)+6 种基金the Clinical Research Incubation Project,West China Hospital,Sichuan University(22HXFH019)the China Postdoctoral Science Foundation(2019 M653416)the International Cooperation Project of Chengdu Municipal Science and Technology Bureau(2020-GH02-00017-HZ)the“1.3.5 Project for Disciplines of Excellence,West China Hospital,Sichuan University”(ZYJC18035,ZYJC18025,ZYYC20003,ZYJC18003)the GIST Research Institute(GRI)IIBR grants funded by the GISTthe National Research Foundation of Korea funded by the Korean government(MSIP)(2019R1C1C1005403,2019R1A4A1028802 and2021M3H9A2097520)the Post-Doctor Research Project,West China Hospital,Sichuan University(2021HXBH054)。
文摘The advent of single-cell RNA sequencing(scRNA-seq)has provided insight into the tumour immune microenvironment(TIME).This review focuses on the application of scRNA-seq in investigation of the TIME.Over time,scRNA-seq methods have evolved,and components of the TIME have been deciphered with high resolution.In this review,we first introduced the principle of scRNA-seq and compared different sequencing approaches.Novel cell types in the TIME,a continuous transitional state,and mutual intercommunication among TIME components present potential targets for prognosis prediction and treatment in cancer.Thus,we concluded novel cell clusters of cancerassociated fibroblasts(CAFs),T cells,tumour-associated macrophages(TAMs)and dendritic cells(DCs)discovered after the application of scRNA-seq in TIME.We also proposed the development of TAMs and exhausted T cells,as well as the possible targets to interrupt the process.In addition,the therapeutic interventions based on cellular interactions in TIME were also summarized.For decades,quantification of the TIME components has been adopted in clinical practice to predict patient survival and response to therapy and is expected to play an important role in the precise treatment of cancer.Summarizing the current findings,we believe that advances in technology and wide application of single-cell analysis can lead to the discovery of novel perspectives on cancer therapy,which can subsequently be implemented in the clinic.Finally,we propose some future directions in the field of TIME studies that can be aided by scRNA-seq technology.
文摘The corneal epithelium is composed of stratified squamous epithelial cells on the outer surface of the eye,which acts as a protective barrier and is critical for clear and stable vision.Its continuous renewal or wound healing depends on the proliferation and differentiation of limbal stem cells(LSCs),a cell population that resides at the limbus in a highly regulated niche.Dysfunction of LSCs or their niche can cause limbal stem cell deficiency,a disease that is manifested by failed epithelial wound healing or even blindness.Nevertheless,compared to stem cells in other tissues,little is known about the LSCs and their niche.With the advent of single-cell RNA sequencing,our understanding of LSC characteristics and their microenvironment has grown considerably.In this review,we summarized the current findings from single-cell studies in the field of cornea research and focused on important advancements driven by this technology,including the heterogeneity of the LSC population,novel LSC markers and regulation of the LSC niche,which will provide a reference for clinical issues such as corneal epithelial wound healing,ocular surface reconstruction and interventions for related diseases.
基金funded by Beijing Hope Run Special Fund of Cancer Foundation of China (No.LC2020A19)。
文摘Single-cell RNA sequencing has been broadly applied to head and neck squamous cell carcinoma(HNSCC) for characterizing the heterogeneity and genomic mutations of HNSCC benefiting from the advantage of single-cell resolution. We summarized most of the current studies and aimed to explore their research methods and ideas, as well as how to transform them into clinical applications. Through single-cell RNA sequencing, we found the differences in tumor cells’ expression programs and differentiation tracks. The studies of immune microenvironment allowed us to distinguish immune cell subpopulations, the extensive expression of immune checkpoints, and the complex crosstalk network between immune cells and non-immune cells. For cancerassociated fibroblasts(CAFs), single-cell RNA sequencing had made an irreplaceable contribution to the exploration of their differentiation status, specific CAFs markers, and the interaction with tumor cells and immune cells. In addition, we demonstrated in detail how single-cell RNA sequencing explored the HNSCC epithelial-tomesenchymal transition(EMT) model and the mechanism of drug resistance, as well as its clinical value.
基金supported by the National Natural Science Foundation of China(Grant No.:81870426)the Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine(Grant No.:ZYYCXTD-D-202002)the Fundamental Research Funds for the Central Universities(Grant No.:226-2023-00059),and the Fundamental Research Funds for the Central Universities.
文摘Gaining a better understanding of autoprotection against drug-induced liver injury(DILI)may provide new strategies for its prevention and therapy.However,little is known about the underlying mechanisms of this phenomenon.We used single-cell RNA sequencing to characterize the dynamics and functions of hepatic non-parenchymal cells(NPCs)in autoprotection against DILI,using acetaminophen(APAP)as a model drug.Autoprotection was modeled through pretreatment with a mildly hepatotoxic dose of APAP in mice,followed by a higher dose in a secondary challenge.NPC subsets and dynamic changes were identified in the APAP(hepatotoxicity-sensitive)and APAP-resistant(hepatotoxicity-resistant)groups.A chemokine(C-C motif)ligand 2^(+)endothelial cell subset almost disappeared in the APAP-resistant group,and an R-spondin 3^(+)endothelial cell subset promoted hepatocyte proliferation and played an important role in APAP autoprotection.Moreover,the dendritic cell subset DC-3 may protect the liver from APAP hepatotoxicity by inducing low reactivity and suppressing the autoimmune response and occurrence of inflammation.DC-3 cells also promoted angiogenesis through crosstalk with endothelial cells via vascular endothelial growth factor-associated ligand-receptor pairs and facilitated liver tissue repair in the APAP-resistant group.In addition,the natural killer cell subsets NK-3 and NK-4 and the Sca-1^(-)CD62L^(+)natural killer T cell subset may promote autoprotection through interferon-γ-dependent pathways.Furthermore,macrophage and neutrophil subpopulations with anti-inflammatory phenotypes promoted tolerance to APAP hepatotoxicity.Overall,this study reveals the dynamics of NPCs in the resistance to APAP hepatotoxicity and provides novel insights into the mechanism of autoprotection against DILI at a high resolution.
基金National Natural Science Foundation of China(General Program),No.31870971Medical Health Science and Technology Project of Zhejiang Province,No.2023KY155.
文摘BACKGROUND Accumulating evidence suggests that the maxillary process,to which cranial crest cells migrate,is essential to tooth development.Emerging studies indicate that Cd271 plays an essential role in odontogenesis.However,the underlying mechanisms have yet to be elucidated.AIM To establish the functionally heterogeneous population in the maxillary process,elucidate the effects of Cd271 deficiency on gene expression differences.METHODS p75NTR knockout(Cd271-/-)mice(from American Jackson laboratory)were used to collect the maxillofacial process tissue of p75NTR knockout mice,and the wildtype maxillofacial process of the same pregnant mouse wild was used as control.After single cell suspension,the cDNA was prepared by loading the single cell suspension into the 10x Genomics Chromium system to be sequenced by NovaSeq6000 sequencing system.Finally,the sequencing data in Fastq format were obtained.The FastQC software is used to evaluate the quality of data and CellRanger analyzed the data.The gene expression matrix is read by R software,and Seurat is used to control and standardize the data,reduce the dimension and cluster.We search for marker genes for subgroup annotation by consulting literature and database;explore the effect of p75NTR knockout on mesenchymal stem cells(MSCs)gene expression and cell proportion by cell subgrouping,differential gene analysis,enrichment analysis and protein-protein interaction network analysis;understand the interaction between MSCs cells and the differentiation trajectory and gene change characteristics of p75NTR knockout MSCs by cell communication analysis and pseudo-time analysis.Last we verified the findings single cell sequencing in vitro.RESULTS We identified 21 cell clusters,and we re-clustered these into three subclusters.Importantly,we revealed the cell–cell communication networks between clusters.We clarified that Cd271 was significantly associated with the regulation of mineralization.CONCLUSION This study provides comprehensive mechanistic insights into the maxillary-process-derived MSCs and demonstrates that Cd271 is significantly associated with the odontogenesis in mesenchymal populations.
基金Supported by the National Natural Science Foundation of China(No.32170204)Science and Technology Strategy Research Special Project of Shanxi Province of China(No.202204031401051)+2 种基金the Basic Research Programs of Shanxi Province of China(No.202103021224009)the Teaching Reform and Innovation Project of Colleges and Universities in Shanxi of China(No.J20220046)the Shanxi“1331 Project”.
文摘Dunaliella salina is a classic halophilic alga.However,its molecular mechanisms in response to high salinity at the post transcriptional level remain unknown.A unique halophilic alga strain,DS-CN1,was screened from four D.salina strains via cell biological,physiological,and biochemical methods.High-throughput sequencing of small RNAs(sRNAs)of DS-CN1 in culture medium containing 3.42-mol/L NaCl(SS group)or 0.05-mol/L NaCl(CO group)was performed on the BGISEQ-500 platform.The annotation and sequences of D.salina sRNAs were profiled.Altogether,44 novel salt stress-responsive microRNAs(miRNAs)with a relatively high C content,with the majority of them being 24 nt in length,were identified and characterized in DS-CN1.Twenty-one differentially expressed miRNAs(DEMs)in SS and CO were screened via bioinformatic analysis.A total of 319 putative salt stress-related genes targeted(104 overlapping genes)by novel miRNAs in this alga were screened based on our previous transcriptome sequencing research.Furthermore,these target genes were classified and enriched by GO and KEGG pathway analysis.Moreover,5 novel DEMs(dsa-mir3,dsa-mir16,dsa-mir17,and dsa-mir26 were significantly upregulated,and dsa-mir40 was significantly downregulated)and their corresponding 10 target genes involved in the 6 significantly enriched metabolic pathways were verified by quantitative real-time PCR.Next,their regulatory relationships were comprehensively analyzed.Lastly,a unique salt stress response metabolic network was constructed based on the novel DEM-target gene pairs.Taken together,our results suggest that 44 novel salt stress-responsive microRNAs were identified,and 4 of them might play important roles in D.salina upon salinity stress and contribute to clarify its distinctive halophilic feature.Our study will shed light on the regulatory mechanisms of salt stress responses.