Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene.Besides traditional approaches, such as transcriptional and transductional targeting, micro RNA-dependent...Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene.Besides traditional approaches, such as transcriptional and transductional targeting, micro RNA-dependent posttranscriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. Micro RNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region(UTR) of the m RNA. To control exogenous transgene expression, tandem repeats of artificial micro RNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene m RNA in cel s expressing the corresponding micro RNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying micro RNA-regulation, highlights new developments in this field and gives an overview of applications of micro RNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.展开更多
AIM: To analyze the association of HCV-RNA with peripheral blood mononuclear cells (PBMC) and to answer the question whether HCV-RNA positivity in PBMC is due to viral replication. METHODS: HCV-RNA was monitored in se...AIM: To analyze the association of HCV-RNA with peripheral blood mononuclear cells (PBMC) and to answer the question whether HCV-RNA positivity in PBMC is due to viral replication. METHODS: HCV-RNA was monitored in serum and PBMC preparations from 15 patients with chronic HCV infection before, during and after an IFN-alpha therapy using a nested RT/PCR technique. In a second approach, PBMC from healthy donors were incubated in HCV positive plasma. RESULTS: In the IFN-alpha responding patients,HCV-RNA disappeared first from total RNA preparations of PBMC and then from serum. In contrast, in relapsing patients, HCV-RNA reappeared first in serum and then in PBMC. A quantitative analysis of the HCV-RNA concentration in serum was performed before and after transition from detectable to non detectable HCV-RNA in PBMC-RNA and vice versa. When HCV-RNA was detectable in PBMC preparations, the HCV concentration in serum was significantly higher than the serum HCV-RNA concentration when HCV-RNA in PBMC was not detectable. Furthermore, at no time during the observation period was HCV specific RNA observed in PBMC, if HCV-RNA in serum was under the detection limit. Incubation of PBMC from healthy donors with several dilutions of HCV positive plasma for two hours showed a concentration dependent PCR positivity for HCV-RNA in reisolated PBMC. CONCLUSION: The detectability of HCV-RNA in total RNA from PBMC seems to depend on the HCV concentration in serum. Contamination or passive adsorption by circulating virus could be the reason for detection of HCV-RNA in PBMC preparations of chronically infected patients.展开更多
The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structura...The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus(HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5'-untranslatable regions(5'UTRs) and 3'UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5' terminus of the viral genome and regulated by distal functional RNA domains placed at the 3' end. Subsequent RNA replication strongly depends on the 3'UTR folding and is also influenced by the 5' end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNARNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.展开更多
RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human ...RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human cells.RNAi-based gene therapies, especially in viral diseases have become more and more interesting and promising. Recently,small interfering RNA (siRNA) can be used to protect host from viral infection, inhibit the expression of viral antigen and accessory genes, control the transcription and replication of viral genome, hinder the assembly of viral particles, and display influences in virus-host interactions. In this review, we attempt to present recent progresses of this breakthrough technology in the above fields and summarize the possibilities of siRNA-based drugs.展开更多
With the help of model experiments, we are able to offer a detailed proposal for the inhibition of DNA duplication and no inhibition of RNA viral infectivity. As a backbone, we introduced methyl phosphotriester (MPTE)...With the help of model experiments, we are able to offer a detailed proposal for the inhibition of DNA duplication and no inhibition of RNA viral infectivity. As a backbone, we introduced methyl phosphotriester (MPTE). Duplex formation according to the traditional Watson and Crick base-pairing: [(MPTE)<sub>n−1</sub> DNA] * DNA and [(MPTE)<sub>n−1</sub> DNA] * RNA, where n = number of DNA and RNA bases. However, in the latter case, inhibition is obtained by reduction of the number of MPTE linkages, as is confirmed with model experiments and under biological conditions with micro (mi)RNA substrates. The latter results have recently been published. One or more single MPTEs are disseminated over different places of DNA without neighbour MPTEs (Prof. Wen-Yih Chen and his group, Taiwan).展开更多
Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic ...Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.展开更多
Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, enc...Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cD NA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed withreference to new technologies that may be utilized to improve reverse genetic approaches.展开更多
HIV-1 matrix protein (MA) is a multifunctional structural protein localized on N terminus of Gag precursor p55. MA participates in HIV-1 assembly as membranotropic part of Gag precursor as well as an individual protei...HIV-1 matrix protein (MA) is a multifunctional structural protein localized on N terminus of Gag precursor p55. MA participates in HIV-1 assembly as membranotropic part of Gag precursor as well as an individual protein spliced from Gag early in infection. MA is found in the nuclei of infected cells and in plasma membrane, the site of virus assembly, in association with viral genome RNA. MA mutated variant M4 which contains two changed amino acids in N-terminal regions is also associated with viral RNA, but it is localized in the nuclear and cytoskeleton fractions but not in the plasma membrane suggesting that the mutant is deprived of membranotropic signal and “sticks” in the nuclei an d cytoskeleton, its previous location sites. These data allow suggesting that MA involved into transmission of viral RNA is transported to plasma membrane by cytoskeleton.展开更多
Viral diseases are among the most critical damaging factors that impose a global threat to the cucurbit industry.China is the world’s leading country for the production and consumption of cucurbits.Guangdong,a provin...Viral diseases are among the most critical damaging factors that impose a global threat to the cucurbit industry.China is the world’s leading country for the production and consumption of cucurbits.Guangdong,a province in southern China dominated by the tropical and subtropical climate,favors the survival of different plant viruses and their vectors.Five main cucurbit crops showing various disease symptoms were surveyed and collected to identify viruses infecting cucurbits in Guangdong during 2018–2020.In the field,the incidence ranged from 5-30%,or even 60-100% in the case of severely infected cucurbits.A total of 357 symptomatic samples were collected and subsequently screened for cucurbit viruses by small RNA deep sequencing and assembly(sRSA).Seventeen virus species belonging to 10 genera were identified in the five main cucurbit crops.The most common viruses were papaya ringspot virus(PRSV;Potyvirus),zucchini tigre mosaic virus(ZTMV;Potyvirus),zucchini yellow mosaic virus(ZYMV;Potyvirus),and watermelon silver mottle virus(WSMoV;Orthotospovirus),with infection rates of 24.4,19.0,17.1,and 14.3%,respectively.Notably,the most prevalent viruses were melon yellow spot orthotospovirus(MYSV)in cucumber,PRSV in squash,cucumber green mottle mosaic virus(CGMMV;Tobamovirus)in bottle gourd,WSMoV in white gourd,and ZYMV in luffa.Mixed infections were prevalent,and the types of mixed infections varied substantially in different cucurbit crops.Moreover,the full-length nucleotide sequences of watermelon green mottle mosaic virus(WGMMV),CGMMV,and watermelon virus A(WVA;Wamavirus)identified in bottle gourd were cloned and analyzed.This study is the first reporting WGMMV infecting bottle gourd in China mainland.In summary,the results demonstrate that in Guangdong,the most prevalent viruses belong to potyviruses,orthotospoviruses,and tobamoviruses groups.The findings will facilitate agricultural researchers and farmers to plan and implement effective disease control strategies aiming at timely detection and management of cucurbit-infecting viral pathogens.展开更多
This is the first systematic investigation of viral pathogens in <i>Vitis</i> <i>vinifera</i> from Hangzhou vicinity of China. About 7 viruses and 5 viroids were annotated from four production ...This is the first systematic investigation of viral pathogens in <i>Vitis</i> <i>vinifera</i> from Hangzhou vicinity of China. About 7 viruses and 5 viroids were annotated from four production bases “Dushicun”, “Wangjiayuan”, “Xiajiangcun”, and “Yangducun” covering 15 cultivars through sRNAseq technique. At least 3 viruses<a name="OLE_LINK4"></a>—grapevine leaf roll-associated virus 3 (GLRaV-3), grapevine fleck <span>virus (GFkV) and grapevine geminivirus A (GGVA), and 4 viroids—hop stunt</span> viroid (HSVd), citrus viroid II (CVd-II), grapevine yellow speckle viroid 1 (GYSVd-1) and grapevine yellow speckle viroid 2 (GYSVd-2) infected all four bases. “Yangducun” base showed 11, the most infected pathogens. GYSVd-1 showed the highest accumulation in host of Wangjiayuan base. The main in<span>fected pathogens were verified by reverse-transcription polymerase chain reaction</span> (RT-PCR) technique, the detected rate reached to 85% - 100%. The results provide an important basis for effective and precise detection of viral diseases in the area and for the virus-free cultivation in future.展开更多
During transcription initiation,RNA polymerase binds tightly to the promoter DNA defining the start of transcription,transcribes comparatively slowly,and frequently releases short transcripts(3-8 nucleotides)in a proc...During transcription initiation,RNA polymerase binds tightly to the promoter DNA defining the start of transcription,transcribes comparatively slowly,and frequently releases short transcripts(3-8 nucleotides)in a process called abortive cycling.Transitioning to elongation,the second phase of transcription,the polymerase dissociates from the promoter while RNA synthesis continues.Elongation is characterized by higher rates of transcription and tight binding to the RNA transcript.The RNA polymerase from enterophage T7 (T7 RNAP) has been used as a model to understand the mechanism of transcription in general,and the transition from initiation to elongation specifically.This single-subunit enzyme undergoes dramatic conformational changes during this transition to support the changing requirements of nucleic acid interactions while continuously maintaining polymerase function.Crystal structures,available of multiple stages of the initiation complex and of the elongation complex,combined with biochemical and biophysical data,offer molecular detail of the transition.Some of the crystal structures contain a variant of T7 RNAP where proline 266 is substituted by leucine.This variant shows less abortive products and altered timing of transition,and is a valuable tool to study these processes.The structural transitions from early to late initiation are well understood and are consistent with solution data.The timing of events and the structural intermediates in the transition from late initiation to elongation are less well understood,but the available data allows one to formulate testable models of the transition to guide further research.展开更多
Digoxigenin-labelled Hantaan specific cDNA probes were used in the present study for in situ hybridization detection of hemorrhagic fever with renal syndrome virus(HFRSV) persistent infection and viral RNA distributio...Digoxigenin-labelled Hantaan specific cDNA probes were used in the present study for in situ hybridization detection of hemorrhagic fever with renal syndrome virus(HFRSV) persistent infection and viral RNA distribution in naturally infected laboratory rat展开更多
Background: It is widely known that the human immune-deficiency virus (HIV) induces biochemical and physiological changes in affected persons. Consequently, the overall aim of this study was to evaluate the HIV-1 RNA ...Background: It is widely known that the human immune-deficiency virus (HIV) induces biochemical and physiological changes in affected persons. Consequently, the overall aim of this study was to evaluate the HIV-1 RNA viral load, CD4 count, and certain haematological parameters among HIV treatment-na?ve subjects in the Enugu metropolis of Nigeria. Materials and Methods: A total of 252 HIV-infected, ART-native subjects (≥18) attending the University of Nigeria Teaching Hospital (UNTH) in Ituku-Ozalla, Enugu were recruited for this study and were made up of 157 (62.3%) females and 95 (37.7%) males. A total of 250 HIV-negative subjects were used as control subjects (100 males and 150 females). Blood samples were collected from all the participants and their HIV-1 status was confirmed by an immunoblot confirmatory test. Their haematological parameters and CD4 count were evaluated, while the HIV-1 viral load was only assessed on confirmed HIV-positive subjects. Results: There was female predominance (62.3%) among these HIV-positive subjects. The mean age of HIV-positive subjects was 39.16 ± 10.08 years while the mean age of the control subjects was 34.8 ± 8.6 years. The age group of 31 - 40 years (102/252 (40.5%)) constituted most of the test subjects. The total white blood cells (TWBC) (6.05 ± 5.46), lymphocyte counts (36 ± 14), haemoglobin concentrations (Hb) (9.85 ± 7.36) and the CD4 counts (242 ± 228) of the HIV-infected subjects showed a significant difference when compared with their control counterpart values of TWBC (4.5 ± 0.568), lymphocytes (39.67 ± 8.2), Hb (13.48 ± 1.5), and CD4 counts (807 ± 249) (p 0.05). Anaemia, lymphocytopenia, and thrombocytopenia were the haematological abnormalities seen in the HIV-positive subjects. HIV viral load correlated with haemoglobin concentration, CD4 count, lymphocyte count, and neutrophil count (p Conclusion: Prognostic factors, such as haemoglobin concentrations, CD4 counts, lymphocyte counts, and neutrophil counts can be used to monitor patients’ viral loads since they correlate with the latter;furthermore, age is a factor that should be considered in the management of HIV-positive patients.展开更多
Macao,a special administrative region(SAR)of the People’s Republic of China,is located in southern China and shares the border with China's Mainland.It is the most densely populated region in the world,with a pop...Macao,a special administrative region(SAR)of the People’s Republic of China,is located in southern China and shares the border with China's Mainland.It is the most densely populated region in the world,with a population of 667400 and a total land area of 32.9 square kilometers in 2019.Since the first case diagnosed on January 22,2020,there was a total of 45 laboratory-confirmed coronavirus disease 2019(COVID-19)cases in Macao,of which 43 patients(96%)were imported cases.To date,all patients had been discharged successfully from Centro Hospitalar Conde de São Januário,a designated hospital to manage all COVID-19 patients in Macao.Eventually,no patient died,and no local community outbreak was noted.This opinion review describes the underlying factors that could have contributed to the successful experience in Macao SAR,China,which include the following:(1)Early implementation of containment measures;(2)Large-scale quarantine using hotel rooms to reduce the risk of a local outbreak;and(3)Multidisciplinary co-operation and transparency of information to the public.Although the successful experience in Macao SAR,China,may not be generalized to other regions,it should not be unreasonable to be well prepared with sufficient logistic support to conduct timely containment and early detection of episodic cases to prevent the backsliding of COVID-19 outbreak.展开更多
BACKGROUND Rapid molecular testing has revolutionized the management of suspected viral meningitis and encephalitis by providing an etiological diagnosis in<90 min with potential to improve outcomes and shorten inp...BACKGROUND Rapid molecular testing has revolutionized the management of suspected viral meningitis and encephalitis by providing an etiological diagnosis in<90 min with potential to improve outcomes and shorten inpatient stays.However,use of molecular assays can vary widely.AIM To evaluate current practice for molecular testing of pediatric cerebrospinal fluid(CSF)samples across the United Kingdom using a structured questionnaire.METHODS A structured telephone questionnaire survey was conducted between July and August 2020.Data was collected on the availability of viral CSF nucleic acid amplification testing(NAAT),criteria used for testing and turnaround times including the impact of the coronavirus disease 2019 pandemic.RESULTS Of 196/212(92%)microbiology laboratories responded;63/196(32%)were excluded from final analysis as they had no on-site microbiology laboratory and outsourced their samples.Of 133 Laboratories included in the study,47/133(35%)had onsite facilities for viral CSF NAAT.Hospitals currently undertaking onsite NAAT(n=47)had much faster turnaround times with 39 centers(83%)providing results in≤24 h as compared to those referring samples to neighboring laboratories(5/86;6%).CONCLUSION Onsite/near-patient rapid NAAT(including polymerase chain reaction)is recommended wherever possible to optimize patient management in the acute setting.展开更多
Dear Editor,The packaging of viral genomic RNA into virus par-ticles is a critical step for virus maturation.This stepincludes the recognition and interaction between the nu-cleocapsid protein and viral RNA.The necess...Dear Editor,The packaging of viral genomic RNA into virus par-ticles is a critical step for virus maturation.This stepincludes the recognition and interaction between the nu-cleocapsid protein and viral RNA.The necessity of viralRNA packaging signals has been described for manyRNA viruses(Cologna R,et al.,2000;Narayanan K,et al.,2001;Tchatalbachev S,et al.,2001).Occasionalpackaging of nongenomic viral RNAs and cellular展开更多
基金Supported by The Deutsche Forschungsgemeinschaft,Nos.FE785/2-2 and FE785/4-1the Bundesministerium für Bildung und Entwicklung,No.031A331
文摘Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene.Besides traditional approaches, such as transcriptional and transductional targeting, micro RNA-dependent posttranscriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. Micro RNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region(UTR) of the m RNA. To control exogenous transgene expression, tandem repeats of artificial micro RNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene m RNA in cel s expressing the corresponding micro RNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying micro RNA-regulation, highlights new developments in this field and gives an overview of applications of micro RNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.
基金Supported by a grant of DFG (SFB 402 Teilprojekt C1 (Mihm))by a grant of Hoffmann La Roche (Grenzach-Wyhden, Germany)Part of the data has been presented as poster at the 1999 EASL-meeting in Neaples
文摘AIM: To analyze the association of HCV-RNA with peripheral blood mononuclear cells (PBMC) and to answer the question whether HCV-RNA positivity in PBMC is due to viral replication. METHODS: HCV-RNA was monitored in serum and PBMC preparations from 15 patients with chronic HCV infection before, during and after an IFN-alpha therapy using a nested RT/PCR technique. In a second approach, PBMC from healthy donors were incubated in HCV positive plasma. RESULTS: In the IFN-alpha responding patients,HCV-RNA disappeared first from total RNA preparations of PBMC and then from serum. In contrast, in relapsing patients, HCV-RNA reappeared first in serum and then in PBMC. A quantitative analysis of the HCV-RNA concentration in serum was performed before and after transition from detectable to non detectable HCV-RNA in PBMC-RNA and vice versa. When HCV-RNA was detectable in PBMC preparations, the HCV concentration in serum was significantly higher than the serum HCV-RNA concentration when HCV-RNA in PBMC was not detectable. Furthermore, at no time during the observation period was HCV specific RNA observed in PBMC, if HCV-RNA in serum was under the detection limit. Incubation of PBMC from healthy donors with several dilutions of HCV positive plasma for two hours showed a concentration dependent PCR positivity for HCV-RNA in reisolated PBMC. CONCLUSION: The detectability of HCV-RNA in total RNA from PBMC seems to depend on the HCV concentration in serum. Contamination or passive adsorption by circulating virus could be the reason for detection of HCV-RNA in PBMC preparations of chronically infected patients.
基金Supported by Spanish Ministry of Economy and Competitiveness,No.BFU2012-31213Junta de Andalucía,No.CVI-7430FEDER funds from the EU
文摘The acquisition of a storage information system beyond the nucleotide sequence has been a crucial issue for the propagation and dispersion of RNA viruses. This system is composed by highly conserved, complex structural units in the genomic RNA, termed functional RNA domains. These elements interact with other regions of the viral genome and/or proteins to direct viral translation, replication and encapsidation. The genomic RNA of the hepatitis C virus(HCV) is a good model for investigating about conserved structural units. It contains functional domains, defined by highly conserved structural RNA motifs, mostly located in the 5'-untranslatable regions(5'UTRs) and 3'UTR, but also occupying long stretches of the coding sequence. Viral translation initiation is mediated by an internal ribosome entry site located at the 5' terminus of the viral genome and regulated by distal functional RNA domains placed at the 3' end. Subsequent RNA replication strongly depends on the 3'UTR folding and is also influenced by the 5' end of the HCV RNA. Further increase in the genome copy number unleashes the formation of homodimers by direct interaction of two genomic RNA molecules, which are finally packed and released to the extracellular medium. All these processes, as well as transitions between them, are controlled by structural RNA elements that establish a complex, direct and long-distance RNARNA interaction network. This review summarizes current knowledge about functional RNA domains within the HCV RNA genome and provides an overview of the control exerted by direct, long-range RNA-RNA contacts for the execution of the viral cycle.
文摘RNA interference (RNAi) is an adaptive defense mechanism triggered by double-stranded RNA (dsRNA). It is a powerful reverse genetic tool that has been widely employed to silence gene expression in mammalian and human cells.RNAi-based gene therapies, especially in viral diseases have become more and more interesting and promising. Recently,small interfering RNA (siRNA) can be used to protect host from viral infection, inhibit the expression of viral antigen and accessory genes, control the transcription and replication of viral genome, hinder the assembly of viral particles, and display influences in virus-host interactions. In this review, we attempt to present recent progresses of this breakthrough technology in the above fields and summarize the possibilities of siRNA-based drugs.
文摘With the help of model experiments, we are able to offer a detailed proposal for the inhibition of DNA duplication and no inhibition of RNA viral infectivity. As a backbone, we introduced methyl phosphotriester (MPTE). Duplex formation according to the traditional Watson and Crick base-pairing: [(MPTE)<sub>n−1</sub> DNA] * DNA and [(MPTE)<sub>n−1</sub> DNA] * RNA, where n = number of DNA and RNA bases. However, in the latter case, inhibition is obtained by reduction of the number of MPTE linkages, as is confirmed with model experiments and under biological conditions with micro (mi)RNA substrates. The latter results have recently been published. One or more single MPTEs are disseminated over different places of DNA without neighbour MPTEs (Prof. Wen-Yih Chen and his group, Taiwan).
基金supported by the National Natural Science Foundation of China,Nos.82301486(to SL)and 82071325(to FY)Medjaden Academy&Research Foundation for Young Scientists,No.MJR202310040(to SL)+2 种基金Nanjing Medical University Science and Technique Development,No.NMUB20220060(to SL)Medical Scientific Research Project of Jiangsu Commission of Health,No.ZDA2020019(to JZ)Health China Buchang Zhiyuan Public Welfare Project for Heart and Brain Health,No.HIGHER202102(to QD).
文摘Acute ischemic stroke is a clinical emergency and a condition with high morbidity,mortality,and disability.Accurate predictive,diagnostic,and prognostic biomarkers and effective therapeutic targets for acute ischemic stroke remain undetermined.With innovations in high-throughput gene sequencing analysis,many aberrantly expressed non-coding RNAs(ncRNAs)in the brain and peripheral blood after acute ischemic stroke have been found in clinical samples and experimental models.Differentially expressed ncRNAs in the post-stroke brain were demonstrated to play vital roles in pathological processes,leading to neuroprotection or deterioration,thus ncRNAs can serve as therapeutic targets in acute ischemic stroke.Moreover,distinctly expressed ncRNAs in the peripheral blood can be used as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.In particular,ncRNAs in peripheral immune cells were recently shown to be involved in the peripheral and brain immune response after acute ischemic stroke.In this review,we consolidate the latest progress of research into the roles of ncRNAs(microRNAs,long ncRNAs,and circular RNAs)in the pathological processes of acute ischemic stroke–induced brain damage,as well as the potential of these ncRNAs to act as biomarkers for acute ischemic stroke prediction,diagnosis,and prognosis.Findings from this review will provide novel ideas for the clinical application of ncRNAs in acute ischemic stroke.
文摘Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cD NA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed withreference to new technologies that may be utilized to improve reverse genetic approaches.
文摘HIV-1 matrix protein (MA) is a multifunctional structural protein localized on N terminus of Gag precursor p55. MA participates in HIV-1 assembly as membranotropic part of Gag precursor as well as an individual protein spliced from Gag early in infection. MA is found in the nuclei of infected cells and in plasma membrane, the site of virus assembly, in association with viral genome RNA. MA mutated variant M4 which contains two changed amino acids in N-terminal regions is also associated with viral RNA, but it is localized in the nuclear and cytoskeleton fractions but not in the plasma membrane suggesting that the mutant is deprived of membranotropic signal and “sticks” in the nuclei an d cytoskeleton, its previous location sites. These data allow suggesting that MA involved into transmission of viral RNA is transported to plasma membrane by cytoskeleton.
基金supported by the grants from the National Natural Science Foundation of China(31801712)the Key Research and Development Program of Guangdong Province,China(2018B020202006)+1 种基金the Agricultural Competitive Industry Discipline Team Building Project of Guangdong Academy of Agricultural Sciences(202103TD and 202105TD)the Development Program for Guangdong Province Modern Agricultural Science and Technology Innovation Alliance(2020KJ113)。
文摘Viral diseases are among the most critical damaging factors that impose a global threat to the cucurbit industry.China is the world’s leading country for the production and consumption of cucurbits.Guangdong,a province in southern China dominated by the tropical and subtropical climate,favors the survival of different plant viruses and their vectors.Five main cucurbit crops showing various disease symptoms were surveyed and collected to identify viruses infecting cucurbits in Guangdong during 2018–2020.In the field,the incidence ranged from 5-30%,or even 60-100% in the case of severely infected cucurbits.A total of 357 symptomatic samples were collected and subsequently screened for cucurbit viruses by small RNA deep sequencing and assembly(sRSA).Seventeen virus species belonging to 10 genera were identified in the five main cucurbit crops.The most common viruses were papaya ringspot virus(PRSV;Potyvirus),zucchini tigre mosaic virus(ZTMV;Potyvirus),zucchini yellow mosaic virus(ZYMV;Potyvirus),and watermelon silver mottle virus(WSMoV;Orthotospovirus),with infection rates of 24.4,19.0,17.1,and 14.3%,respectively.Notably,the most prevalent viruses were melon yellow spot orthotospovirus(MYSV)in cucumber,PRSV in squash,cucumber green mottle mosaic virus(CGMMV;Tobamovirus)in bottle gourd,WSMoV in white gourd,and ZYMV in luffa.Mixed infections were prevalent,and the types of mixed infections varied substantially in different cucurbit crops.Moreover,the full-length nucleotide sequences of watermelon green mottle mosaic virus(WGMMV),CGMMV,and watermelon virus A(WVA;Wamavirus)identified in bottle gourd were cloned and analyzed.This study is the first reporting WGMMV infecting bottle gourd in China mainland.In summary,the results demonstrate that in Guangdong,the most prevalent viruses belong to potyviruses,orthotospoviruses,and tobamoviruses groups.The findings will facilitate agricultural researchers and farmers to plan and implement effective disease control strategies aiming at timely detection and management of cucurbit-infecting viral pathogens.
文摘This is the first systematic investigation of viral pathogens in <i>Vitis</i> <i>vinifera</i> from Hangzhou vicinity of China. About 7 viruses and 5 viroids were annotated from four production bases “Dushicun”, “Wangjiayuan”, “Xiajiangcun”, and “Yangducun” covering 15 cultivars through sRNAseq technique. At least 3 viruses<a name="OLE_LINK4"></a>—grapevine leaf roll-associated virus 3 (GLRaV-3), grapevine fleck <span>virus (GFkV) and grapevine geminivirus A (GGVA), and 4 viroids—hop stunt</span> viroid (HSVd), citrus viroid II (CVd-II), grapevine yellow speckle viroid 1 (GYSVd-1) and grapevine yellow speckle viroid 2 (GYSVd-2) infected all four bases. “Yangducun” base showed 11, the most infected pathogens. GYSVd-1 showed the highest accumulation in host of Wangjiayuan base. The main in<span>fected pathogens were verified by reverse-transcription polymerase chain reaction</span> (RT-PCR) technique, the detected rate reached to 85% - 100%. The results provide an important basis for effective and precise detection of viral diseases in the area and for the virus-free cultivation in future.
文摘During transcription initiation,RNA polymerase binds tightly to the promoter DNA defining the start of transcription,transcribes comparatively slowly,and frequently releases short transcripts(3-8 nucleotides)in a process called abortive cycling.Transitioning to elongation,the second phase of transcription,the polymerase dissociates from the promoter while RNA synthesis continues.Elongation is characterized by higher rates of transcription and tight binding to the RNA transcript.The RNA polymerase from enterophage T7 (T7 RNAP) has been used as a model to understand the mechanism of transcription in general,and the transition from initiation to elongation specifically.This single-subunit enzyme undergoes dramatic conformational changes during this transition to support the changing requirements of nucleic acid interactions while continuously maintaining polymerase function.Crystal structures,available of multiple stages of the initiation complex and of the elongation complex,combined with biochemical and biophysical data,offer molecular detail of the transition.Some of the crystal structures contain a variant of T7 RNAP where proline 266 is substituted by leucine.This variant shows less abortive products and altered timing of transition,and is a valuable tool to study these processes.The structural transitions from early to late initiation are well understood and are consistent with solution data.The timing of events and the structural intermediates in the transition from late initiation to elongation are less well understood,but the available data allows one to formulate testable models of the transition to guide further research.
文摘Digoxigenin-labelled Hantaan specific cDNA probes were used in the present study for in situ hybridization detection of hemorrhagic fever with renal syndrome virus(HFRSV) persistent infection and viral RNA distribution in naturally infected laboratory rat
文摘Background: It is widely known that the human immune-deficiency virus (HIV) induces biochemical and physiological changes in affected persons. Consequently, the overall aim of this study was to evaluate the HIV-1 RNA viral load, CD4 count, and certain haematological parameters among HIV treatment-na?ve subjects in the Enugu metropolis of Nigeria. Materials and Methods: A total of 252 HIV-infected, ART-native subjects (≥18) attending the University of Nigeria Teaching Hospital (UNTH) in Ituku-Ozalla, Enugu were recruited for this study and were made up of 157 (62.3%) females and 95 (37.7%) males. A total of 250 HIV-negative subjects were used as control subjects (100 males and 150 females). Blood samples were collected from all the participants and their HIV-1 status was confirmed by an immunoblot confirmatory test. Their haematological parameters and CD4 count were evaluated, while the HIV-1 viral load was only assessed on confirmed HIV-positive subjects. Results: There was female predominance (62.3%) among these HIV-positive subjects. The mean age of HIV-positive subjects was 39.16 ± 10.08 years while the mean age of the control subjects was 34.8 ± 8.6 years. The age group of 31 - 40 years (102/252 (40.5%)) constituted most of the test subjects. The total white blood cells (TWBC) (6.05 ± 5.46), lymphocyte counts (36 ± 14), haemoglobin concentrations (Hb) (9.85 ± 7.36) and the CD4 counts (242 ± 228) of the HIV-infected subjects showed a significant difference when compared with their control counterpart values of TWBC (4.5 ± 0.568), lymphocytes (39.67 ± 8.2), Hb (13.48 ± 1.5), and CD4 counts (807 ± 249) (p 0.05). Anaemia, lymphocytopenia, and thrombocytopenia were the haematological abnormalities seen in the HIV-positive subjects. HIV viral load correlated with haemoglobin concentration, CD4 count, lymphocyte count, and neutrophil count (p Conclusion: Prognostic factors, such as haemoglobin concentrations, CD4 counts, lymphocyte counts, and neutrophil counts can be used to monitor patients’ viral loads since they correlate with the latter;furthermore, age is a factor that should be considered in the management of HIV-positive patients.
文摘Macao,a special administrative region(SAR)of the People’s Republic of China,is located in southern China and shares the border with China's Mainland.It is the most densely populated region in the world,with a population of 667400 and a total land area of 32.9 square kilometers in 2019.Since the first case diagnosed on January 22,2020,there was a total of 45 laboratory-confirmed coronavirus disease 2019(COVID-19)cases in Macao,of which 43 patients(96%)were imported cases.To date,all patients had been discharged successfully from Centro Hospitalar Conde de São Januário,a designated hospital to manage all COVID-19 patients in Macao.Eventually,no patient died,and no local community outbreak was noted.This opinion review describes the underlying factors that could have contributed to the successful experience in Macao SAR,China,which include the following:(1)Early implementation of containment measures;(2)Large-scale quarantine using hotel rooms to reduce the risk of a local outbreak;and(3)Multidisciplinary co-operation and transparency of information to the public.Although the successful experience in Macao SAR,China,may not be generalized to other regions,it should not be unreasonable to be well prepared with sufficient logistic support to conduct timely containment and early detection of episodic cases to prevent the backsliding of COVID-19 outbreak.
文摘BACKGROUND Rapid molecular testing has revolutionized the management of suspected viral meningitis and encephalitis by providing an etiological diagnosis in<90 min with potential to improve outcomes and shorten inpatient stays.However,use of molecular assays can vary widely.AIM To evaluate current practice for molecular testing of pediatric cerebrospinal fluid(CSF)samples across the United Kingdom using a structured questionnaire.METHODS A structured telephone questionnaire survey was conducted between July and August 2020.Data was collected on the availability of viral CSF nucleic acid amplification testing(NAAT),criteria used for testing and turnaround times including the impact of the coronavirus disease 2019 pandemic.RESULTS Of 196/212(92%)microbiology laboratories responded;63/196(32%)were excluded from final analysis as they had no on-site microbiology laboratory and outsourced their samples.Of 133 Laboratories included in the study,47/133(35%)had onsite facilities for viral CSF NAAT.Hospitals currently undertaking onsite NAAT(n=47)had much faster turnaround times with 39 centers(83%)providing results in≤24 h as compared to those referring samples to neighboring laboratories(5/86;6%).CONCLUSION Onsite/near-patient rapid NAAT(including polymerase chain reaction)is recommended wherever possible to optimize patient management in the acute setting.
基金supported by the National Natural Science Foundation of China(Grant No.30370057)
文摘Dear Editor,The packaging of viral genomic RNA into virus par-ticles is a critical step for virus maturation.This stepincludes the recognition and interaction between the nu-cleocapsid protein and viral RNA.The necessity of viralRNA packaging signals has been described for manyRNA viruses(Cologna R,et al.,2000;Narayanan K,et al.,2001;Tchatalbachev S,et al.,2001).Occasionalpackaging of nongenomic viral RNAs and cellular