Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to...Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses;hence,this study aimed to engineer SMV resistance in soybean using this system.Specifically,multiple sgRNAs were designed to target positive-and/or negative-sense strands of the SMV HC-Pro gene.Subsequently,the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans.After inoculation with SMV,39.02%,35.77%,and 18.70%of T_(1)plants were confirmed to be highly resistant(HR),resistant(R),and mildly resistant(MR)to SMV,respectively,whereas only 6.50%were identified as susceptible(S).Additionally,qRT-PCR and DAS-ELISA showed that,both at 15 and 30 d post-inoculation(dpi),SMV accumulation significantly decreased or was even undetectable in HR and R plants,followed by MR and S plants.Additionally,the expression level of the CasRx gene varied in almost all T_(1)plants with different resistance level,both at 15 and 30 dpi.Furthermore,when SMV resistance was evaluated in the T_(2)generation,the results were similar to those recorded for the T_(1)generation.These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.展开更多
The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on...The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on a broad range of host plants,and broad pesticide resistance.These challenges have driven research into developing alternative pest control approaches for WFT.This study analyzed the feasibility of a biological control-based strategy to manage WFT using RNA interference(RNAi)-mediated silencing of WFT endogenous genes.For the delivery of RNAi,we developed transgenic tomato lines expressing double-stranded RNA(dsRNA)of coatomer protein subunit epsilon(CopE)and Toll-like receptor 6(TLR6)from WFT.These genes are involved in critical biological processes of WFT,and their dsRNA can be lethal to these insects when ingested orally.Adult WFT that fed on the transgenic dsRNAexpressing tomato flower stalk showed increased mortality compared with insects that fed on wild-type samples.In addition,WFT that fed on TLR6 and CopE transgenic tomato RNAi lines showed reduced levels of endogenous CopE and TLR6 transcripts,suggesting that their mortality was likely due to RNAi-mediated silencing of these genes.Thus,our findings demonstrate that transgenic tomato plants expressing dsRNA of TLR6 and CopE can be lethal to F.occidentalis,suggesting that these genes may be deployed to control insecticide-resistant WFT.展开更多
CrylAb gene was transformed into four rice varieties, Zhejing 22, Zhejing 27, Jiahua 1 and Xiushui 63 mediated by Agrobacterium-mixture co-transformation. Rice genotype had an important effect on callus induction and ...CrylAb gene was transformed into four rice varieties, Zhejing 22, Zhejing 27, Jiahua 1 and Xiushui 63 mediated by Agrobacterium-mixture co-transformation. Rice genotype had an important effect on callus induction and transformation efficiency. Different mixtures of Agrobacterium strains (EHA105 and EHA101) contained Hpt and CrylAb genes resulted in different frequencies of resistant calli. There was no correlation between the frequency of transformants with the ratio of the Agrobacterium strain mixture contained Hpt and CrylAb genes. A total of 509 transgenic plants were obtained from the four rice varieties, and 272 T2 progenies were analyzed for CrylAb and Hpt genes. PCR analysis revealed that 412 regenerated plants were Hpt positive (80.94%), 62 plants were also CrylAb co-transformants (15.05% in total frequency), and 42 plants among the 272 T2 progenies were CrylAb positive but Hpt negative. This suggests that marker-free transgenic plants could be produced by co-transformation mediated by mixed Agrobacterium strains with the selectable marker gene and target gene Southern blot analysis of five independent marker-free T2 transgenic lines co-transformed from Zhejing 22 showed that CrylAb gene had been inserted into rice genome with a single copy. The transgenic plants showed significantly stronger resistance to lepidopteron than the non-transgenic plants under no application of insecticides against lepidopteron.展开更多
Gastric cancer(GC)is the third leading cause of cancer-related mortality worldwide.The poorly prognosis and survival of GC are due to diagnose in an advanced,non-curable stage and with a limited response to chemothera...Gastric cancer(GC)is the third leading cause of cancer-related mortality worldwide.The poorly prognosis and survival of GC are due to diagnose in an advanced,non-curable stage and with a limited response to chemotherapy.The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients.Although the mechanisms of anticancer drug resistance have been broadly studied,the regulation of these mechanisms has not been completely understood.Accumulating evidence has recently highlighted the role of non-coding RNAs(ncRNAs),including long non-coding RNAs and microRNAs,in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC.We review the literature on ncRNAs in drug resistance of GC.This review summarizes the current knowledge about the ncRNAs’characteristics,their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.展开更多
The Citrus tristeza virus (CTV) uses 3 silencing suppressor genes, p20, p23 and p25, to resist the attacks from its Citrus hosts. Inactivating these genes is therefore obviously a potential defensive option in additio...The Citrus tristeza virus (CTV) uses 3 silencing suppressor genes, p20, p23 and p25, to resist the attacks from its Citrus hosts. Inactivating these genes is therefore obviously a potential defensive option in addition to the current control strat-egies including aphid management and the use of mild strain cross protection. In this study, we cloned partial DNA frag-ments from the three genes, and used them to construct vectors for expressing hairpin RNAs (hpRNAs). To facilitate the formation of hpRNAs, the constructs were introduced in a loop structure. Fol owing transformation of sour orange (Citrus aurantium) with these constructs, 8 p20 hpRNA (hp20) and 1 p25 hpRNA (hp25) expressing lines were obtained. The 7 hp20 transgenic lines were further characterized. Their reactions to CTV were tested fol owing inoculation with CT14A and/or TR-L514, both of which are severe strains. Results showed that 3 lines (hp20-5, hp20-6 and hp20-8) were completely resistant to TR-L514 under greenhouse conditions for no detectable viral load was found in their leaves by PCR. However, they exhibited only partial suppression of TR-L514 under screen house conditions since the virus was detected in their leaves, though 2 months later compared to non-transgenic controls. Further tests showed that hp20-5 was tolerant also to CT14A under screen house conditions. The growth of hp20-5 was much better than others including the controls that were concurrently chal enged with CT14A. These results showed that expressing p20 hpRNA was sufifcient to confer sour orange with CTV resistance/tolerance.展开更多
Chemotherapeutics are validated conventional treatments for patients with advanced cancer.However,with continual application of chemotherapeutics,chemoresistance,which is often predictive of poor prognosis,has gradual...Chemotherapeutics are validated conventional treatments for patients with advanced cancer.However,with continual application of chemotherapeutics,chemoresistance,which is often predictive of poor prognosis,has gradually become a concern in recent years.Circular RNAs(circ RNAs),a class of endogenous noncoding RNAs(nc RNAs)with a closed-loop structure,have been reported to be notable targets and markers for the prognosis,diagnosis,and treatment of many diseases,particularly cancer.Although dozens of studies have shown that circ RNAs play major roles in drug-resistance activity in tumors,the mechanisms by which circ RNAs affect chemoresistance have yet to be explored.In this review,we describe the detailed mechanisms of circ RNAs and chemotherapeutics in various cancers and summarize potential therapeutic targets for drug-resistant tumors.展开更多
BACKGROUND The incidence of colon cancer(CC)is currently high,and is mainly treated with chemotherapy.Oxaliplatin(L-OHP)is a commonly used drug in chemotherapy;however,long-term use can induce drug resistance and seri...BACKGROUND The incidence of colon cancer(CC)is currently high,and is mainly treated with chemotherapy.Oxaliplatin(L-OHP)is a commonly used drug in chemotherapy;however,long-term use can induce drug resistance and seriously affect the prognosis of patients.Therefore,this study investigated the mechanism of Opainteracting protein 5 antisense RNA 1(OIP5-AS1)on L-OHP resistance by determining the expression of OIP5-AS1 and micro RNA-137(miR-137)in CC cells and the effects on L-OHP resistance,with the goal of identifying new targets for the treatment of CC.AIM To study the effects of long non-coding RNA OIP5-AS1 on L-OHP resistance in CC cell lines and its regulation of miR-137.METHODS A total of 114 CC patients admitted to China-Japan Union Hospital of Jilin University were enrolled,and the expression of miR-137 and OIP5-AS1 in tumor tissues and corresponding normal tumor-adjacent tissues was determined.The influence of OIP5-AS1 and miR-137 on the biological behavior of CC cells was evaluated.Resistance to L-OHP was induced in CC cells,and their activity was determined and evaluated using cell counting kit-8.Flow cytometry was used to analyze the apoptosis rate,Western blot to determine the levels of apoptosisrelated proteins,and dual luciferase reporter assay combined with RNA-binding protein immunoprecipitation to analyze the relationship between OIP5-AS1 and miR-137.RESULTS OIP5-AS1 was up-regulated in CC tissues and cells,while miR-137 was downregulated in CC tissues and cells.OIP5-AS1 was inversely correlated with miR-137(P<0.001).Silencing OIP5-AS1 expression significantly hindered the proliferation,invasion and migration abilities of CC cells and markedly increased the apoptosis rate.Up-regulation of miR-137 expression also suppressed these abilities in CC cells and increased the apoptosis rate.Moreover,silencing OIP5-AS1 and up-regulating miR-137 expression significantly intensified growth inhibition of drug-resistant CC cells and improved the sensitivity of CC cells to LOHP.OIP5-AS1 targetedly inhibited miR-137 expression,and silencing OIP5-AS1 reversed the resistance of CC cells to L-OHP by promoting the expression of miR-137.CONCLUSION Highly expressed in CC,OIP5-AS1 can affect the biological behavior of CC cells,and can also regulate the resistance of CC cells to L-OHP by mediating miR-137 expression.展开更多
Colorectal cancer(CRC)is one of the most common malignancies of the digestive tract,with the annual incidence and mortality increasing consistently.Oxaliplatinbased chemotherapy is a preferred therapeutic regimen for ...Colorectal cancer(CRC)is one of the most common malignancies of the digestive tract,with the annual incidence and mortality increasing consistently.Oxaliplatinbased chemotherapy is a preferred therapeutic regimen for patients with advanced CRC.However,most patients will inevitably develop resistance to oxaliplatin.Many studies have reported that non-coding RNAs(ncRNAs),such as microRNAs,long non-coding RNAs,and circular RNAs,are extensively involved in cancer progression.Moreover,emerging evidence has revealed that ncRNAs mediate chemoresistance to oxaliplatin by transcriptional and post-transcriptional regulation,and by epigenetic modification.In this review,we summarize the mechanisms by which ncRNAs regulate the initiation and development of CRC chemoresistance to oxaliplatin.Furthermore,we investigate the clinical application of ncRNAs as promising biomarkers for liquid CRC biopsy.This review provides new insights into overcoming oxaliplatin resistance in CRC by targeting ncRNAs.展开更多
AIM: To investigate the associations between miRNA-103(mi R-103) and insulin resistance and nonalcoholic fatty liver disease(NAFLD).METHODS: Serum samples were collected from 50 NAFLD patients who were overweight or o...AIM: To investigate the associations between miRNA-103(mi R-103) and insulin resistance and nonalcoholic fatty liver disease(NAFLD).METHODS: Serum samples were collected from 50 NAFLD patients who were overweight or obese(NAFLD group) and from 30 healthy subjects who served as controls(normal control group). Quantitative polymerasechain reaction was used to detect expression of mi R-103. Fasting plasma glucose, fasting insulin, and triglyceride(TG) levels were measured. Homeostasis model assessment was used to evaluate basal insulin resistance(HOMA-IR). Patient height and weight were measured to calculate body mass index(BMI).RESULTS: Compared with the normal control group, higher serum levels of mi R-103 were expressed in the NAFLD group(8.18 ± 0.73 vs 4.23 ± 0.81, P = 0.000). When P = 0.01(bilateral), mi R-103 was positively correlated with HOMA-IR(r = 0.881), TG(r = 0.774) and BMI(r = 0.878), respectively. mi R-103, TG and BMI were all independent factors for HOMAIR(β = 0.438/0.657/0.251, P = 0.000/0.007/0.001). mi R-103, TG, BMI and HOMA-IR were all risk factors for NAFLD(odds ratio = 2.411/16.196/1.574/19.11, P = 0.009/0.022/0.01/0.014).CONCLUSION: mi R-103 is involved in insulin resistance and NAFLD, and may be a molecular link between insulin resistance and NAFLD and a therapeutic target for these disorders.展开更多
Abnormal expression of long interspersed element-1(LINE-1)has been implicated in drug resistance,while our previous study showed that chemotherapy drug paclitaxel(PTX)increased LINE-1 level with unknown mechanism.Bioi...Abnormal expression of long interspersed element-1(LINE-1)has been implicated in drug resistance,while our previous study showed that chemotherapy drug paclitaxel(PTX)increased LINE-1 level with unknown mechanism.Bioinformatics analysis suggested the regulation of LINE-1 mRNA by drug-induced stress granules(SGs).This study aimed to explore whether and how SGs are involved in drug-induced LINE-1 increase and thereby promotes drug resistance of triple negative breast cancer(TNBC)cells.We demonstrated that SGs increased LINE-1 expression by recruiting and stabilizing LINE-1 mRNA under drug stress,thereby adapting TNBC cells to chemotherapy drugs.Moreover,LINE-1 inhibitor efavirenz(EFV)could inhibit drug-induced SG to destabilize LINE-1.Our study provides the first evidence of the regulation of LINE-1 by SGs that could be an important survival mechanism for cancer cells exposed to chemotherapy drugs.The findings provide a useful clue for developing new chemotherapeutic strategies against TNBCs.展开更多
Particulate matter (PM), which is a great environmental concern, has been classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC);.Epidemiological and experimental studie...Particulate matter (PM), which is a great environmental concern, has been classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC);.Epidemiological and experimental studies have indicated that chronic exposure to PM, especially PM;(particles with an aerodynamic diameter less than展开更多
The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally.Although newer therapeutic strategie...The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally.Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes,their clinical success is limited by drug resistance,treatment failure and recurrence of metastatic disease.Therefore,there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies.Circular RNAs(circRNAs)exhibit a covalently closed structure,high stability and biological conservation,and their expression is associated with the occurrence and development of gastrointestinal tumors.Moreover,circRNAs may significantly influence drug resistance of gastrointestinal cancers.In this article,we review the role of circRNAs in the occurrence and development of gastrointestinal cancer,their association with drug resistance,and potential application for early diagnosis,treatment and prognosis in gastrointestinal malignancies.Furthermore,we summarize characteristics of circRNA,including mechanism of formation and biological effects via mRNA sponging,chromatin replication,gene regulation,translational modification,signal transduction,and damage repair.Finally,we discuss whether circRNA-related noninvasive testing may be clinically provided in the future.This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.展开更多
Since maize is one of the most important cereal crops in the world,establishment of an efficient genetic transformation system is critical for its improvement.In the current study,several elite corn lines were tested ...Since maize is one of the most important cereal crops in the world,establishment of an efficient genetic transformation system is critical for its improvement.In the current study,several elite corn lines were tested for suitability of Agrobacterium tumefaciens-mediated transformation by using immature embryos as explants.Infection ability and efficiency of transformation of A.tumefaciens sp.strains EHA105 and LBA4404,different heat treatment times of immature embryos before infection,influence of L-cysteine addition in co-cultivation medium after transformation,and how different ways of selection and cultivation influence the efficiency of transformation were compared.Glyphosate-resistant gene 2mG2-EPSPS was transformed into several typical maize genotypes including 78599,Zong 31 and BA,under the optimum conditions.Results showed that the hypervirulent Agrobacterium tumefaciens sp.strain EHA105 was more infectious than LBA4404.Inclusion of L-cysteine(100 mg L-1) in co-cultivation medium,and heating of the immature embryos for 3 min prior to infection led to a significant increase in the transformation efficiency.Growth in resting medium for 4-10 d and delaying selection was beneficial to the survival of resistant calli.During induction of germination,adding a high concentration of 6-BA(5 mg L-1) and a low concentration of 2,4-D(0.2 mg L-1) to regeneration medium significantly enhanced germination percentage.Using the optimized transformation procedure,more than 800 transgenic plants were obtained from 78599,Zong 31 and BA.By spraying herbicide glyphosate on leaves of transgenic lines,we identified 66 primary glyphosate-resistant plants.The transformation efficiency was 8.2%.PCR and Southern-blot analyses confirmed the integration of the transgenes in the maize genome.展开更多
Insect pest and weeds are two major problems for forage and turf grasses. In this study, scarab larvae- and herbicide-resistant transgenic perennial ryegrass (Lolium perenne L.) was obtained by transforming it with ...Insect pest and weeds are two major problems for forage and turf grasses. In this study, scarab larvae- and herbicide-resistant transgenic perennial ryegrass (Lolium perenne L.) was obtained by transforming it with cry and bar genes simultaneously via the Agrobacterium-mediated method. To optimize the callus induction and plant regeneration conditions, various concentrations of 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine were assayed. The transformation efficiencies of different Agrobacterium suspension media, used during Agrobacterium-mediated transformation, were compared. Then, plasmids of pCAMBIA3301 containing cry gene (cry8Ca2 or cry8Ga) and bar gene, driven by ubiquitin promoter, were transformed into perennial ryegrass. The transformants were generated and confirmed by both Southern hybridization analysis and Western hybridization analysis. Further, the resistance of transgenic perennial ryegrass plants to scarab larvae and herbicide were analyzed. After 30 d of co-cultivation with scarab larvae, the damage to the root system of transgenic plants was less than that of non-transgenic control plants. Additionally, the leaves of transgenic plants were resistant to Basta, while leaves of the wild plants wilted after Basta spraying. These results show that cry gene and bar gene were successfully transferred into perennial ryegrass by the Agrobactgerium-mediated method, and convey resistance to scarab larvae and herbicide in transgenic perennial ryegrass plants.展开更多
In order to investigate the effects of vector-based hairpin small interference RNA (shRNA) on the reversal of multi-drug resistance (mdr) of A2780/Taxol cells, a novel vector pEGFP-HI/mdrl containing mdrl-shRNA ta...In order to investigate the effects of vector-based hairpin small interference RNA (shRNA) on the reversal of multi-drug resistance (mdr) of A2780/Taxol cells, a novel vector pEGFP-HI/mdrl containing mdrl-shRNA targeting at position 2943-2963 of mdrl was designed and synthesized. Subsequently, A2780/Taxol cells were transfected with pEGFP-H1/rndrl, and the expression ofmdrl mRNA and P-gp was detected by using RT-PCR and Western blot respectively. MTT was used to measure the 50% inhibition concentration (IC50) of Taxol to A2780/Taxol cells. The results showed that at the 24th and 48th h after transfection, the expression of mdrl mRNA was decreased to (52.1±1.0)% and (0.01±1.7)%, and that of P-gp decreased to (88.3±2.1)% and 0%, respectively. At the 48th h after transfection, the relative reversal rate of A2780/Taxol cells to Taxol was 69.54%. In vivo, the nude mice xenografts were injected with pEGFP-H1/mdrl, and then administrated Taxol. The tumor volume in pEGFP-H1/mdrl-transfected group was significantly reduced as compared with that in blank control group or pEGFP-Hl-transfected group (807.20±103.16 vs 1563.78±210.54 or 1480.78±241.24 mm^3, both P〈0.01). These results suggested that transfection of pEGFP-HI/mdrl could efficiently down-regulate the expression of mdrl mRNA and P-gp in A2780/Taxol cells, and effectively restore the sensitivity of A2780/Taxol ceils to Taxol both in vitro and in vivo.展开更多
BACKGROUND Colorectal cancer(CRC)is a commonly diagnosed cancer of the digestive system worldwide.Although chemotherapeutic agents and targeted therapeutic drugs are currently available for CRC treatment,drug resistan...BACKGROUND Colorectal cancer(CRC)is a commonly diagnosed cancer of the digestive system worldwide.Although chemotherapeutic agents and targeted therapeutic drugs are currently available for CRC treatment,drug resistance is a problem that cannot be ignored and needs to be solved.AIM To explore the relationship between circular RNA(circRNA)and CRC drug resistance.circRNA plays a key role in the occurrence and development of cancers,but its function in the process of drug resistance has not been widely revealed.METHODS To explore the role of circRNA in 5-fluorouracil(5-Fu)resistance,we performed the circRNA expression profile in two CRC cell lines and their homologous 5-Fu resistant cells by high-throughput sequencing.RESULTS We validated the differentially expressed circRNAs in other two paired CRC cells,confirmed that circ_0002813 and circ_0000236 could have a potential competitive endogenous RNA mechanism and be involved in the formation of 5-Fu resistance.And we combined the sequencing results of mRNA to construct the regulatory network of circRNA-miRNA-mRNA.CONCLUSION Our study revealed that circ_0002813 and circ_0000236 may as the biomarkers to predict the occurrence of 5-Fu resistance in CRC.展开更多
Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accum...Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs(lnc RNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. Data sources: We carried out a systematic review on lnc RNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lnc RNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in Pub Med with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lnc RNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. Results: Lnc RNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting mi RNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. Conclusions: The functional lnc RNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.展开更多
RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells ...RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells and has been applied in the field of biomedicine,exhibiting huge potential in drug target identification,optimization of drug targets,multidrug resistance,etc.This paper first introduces the mechanism of RNA interference and the formation mechanism of multidrug resistance of tumor cells,on the basis of which it reviews the application and challenges of RNA interference technology in reversing multidrug resistance.Additionally,the development of the siRNA delivery system is illustrated.展开更多
基金supported by grants from National Natural Science Foundation of China(32001571)R&D Program of Beijing Municipal Education Commission(KM202212448003,KM202312448004)+4 种基金Science and Technology Innovation Project of Beijing Vocational College of Agriculture(XY-YF-22-02)Zhongshan Biological Breeding Laboratory(ZSBBL-KY2023-03)China Agriculture Research System of MOF and MARA(CARS-04)Jiangsu Collaborative Innovation Center for Modern Crop Production(JCICMCP)Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry(CIC-MCP).
文摘Soybean mosaic virus(SMV),an RNA virus,is the most common and destructive pathogenic virus in soybean fields.The newly developed CRISPR/Cas immune system has provided a novel strategy for improving plant resistance to viruses;hence,this study aimed to engineer SMV resistance in soybean using this system.Specifically,multiple sgRNAs were designed to target positive-and/or negative-sense strands of the SMV HC-Pro gene.Subsequently,the corresponding CRISPR/CasRx vectors were constructed and transformed into soybeans.After inoculation with SMV,39.02%,35.77%,and 18.70%of T_(1)plants were confirmed to be highly resistant(HR),resistant(R),and mildly resistant(MR)to SMV,respectively,whereas only 6.50%were identified as susceptible(S).Additionally,qRT-PCR and DAS-ELISA showed that,both at 15 and 30 d post-inoculation(dpi),SMV accumulation significantly decreased or was even undetectable in HR and R plants,followed by MR and S plants.Additionally,the expression level of the CasRx gene varied in almost all T_(1)plants with different resistance level,both at 15 and 30 dpi.Furthermore,when SMV resistance was evaluated in the T_(2)generation,the results were similar to those recorded for the T_(1)generation.These findings provide new insights into the application of the CRISPR/CasRx system for soybean improvement and offer a promising alternative strategy for breeding for resistance to biotic stress that will contribute to the development of SMV-immune soybean germplasm to accelerate progress towards greater soybean crop productivity.
基金supported by the Basic Science Research Program through the National Research Foundation(NRF),Ministry of Education,Korea(2021R1I1A1A01041938)a grant from the New Breeding Technologies Development Program,Rural Development Administration,Korea(PJ0165432022)supported in part by the BK21 Plus Program,Ministry of Education,Korea。
文摘The western flower thrips(WFT;Frankliniella occidentalis)is a mesophyll cell feeder that damages many crops.Management of WFT is complex due to factors such as high fecundity,short reproduction time,ability to feed on a broad range of host plants,and broad pesticide resistance.These challenges have driven research into developing alternative pest control approaches for WFT.This study analyzed the feasibility of a biological control-based strategy to manage WFT using RNA interference(RNAi)-mediated silencing of WFT endogenous genes.For the delivery of RNAi,we developed transgenic tomato lines expressing double-stranded RNA(dsRNA)of coatomer protein subunit epsilon(CopE)and Toll-like receptor 6(TLR6)from WFT.These genes are involved in critical biological processes of WFT,and their dsRNA can be lethal to these insects when ingested orally.Adult WFT that fed on the transgenic dsRNAexpressing tomato flower stalk showed increased mortality compared with insects that fed on wild-type samples.In addition,WFT that fed on TLR6 and CopE transgenic tomato RNAi lines showed reduced levels of endogenous CopE and TLR6 transcripts,suggesting that their mortality was likely due to RNAi-mediated silencing of these genes.Thus,our findings demonstrate that transgenic tomato plants expressing dsRNA of TLR6 and CopE can be lethal to F.occidentalis,suggesting that these genes may be deployed to control insecticide-resistant WFT.
基金supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No.Z305650 and No.Y3080361)the Science and Technology Department of Zhejiang Province,China (Grant No.2004C12020)+1 种基金the National Key Technology Research & Development Program,China (Grant No.2006BAD01A01-5 and No.2008ZX08001-001)the 151 Foundation for the Talents of Zhejiang Province,China
文摘CrylAb gene was transformed into four rice varieties, Zhejing 22, Zhejing 27, Jiahua 1 and Xiushui 63 mediated by Agrobacterium-mixture co-transformation. Rice genotype had an important effect on callus induction and transformation efficiency. Different mixtures of Agrobacterium strains (EHA105 and EHA101) contained Hpt and CrylAb genes resulted in different frequencies of resistant calli. There was no correlation between the frequency of transformants with the ratio of the Agrobacterium strain mixture contained Hpt and CrylAb genes. A total of 509 transgenic plants were obtained from the four rice varieties, and 272 T2 progenies were analyzed for CrylAb and Hpt genes. PCR analysis revealed that 412 regenerated plants were Hpt positive (80.94%), 62 plants were also CrylAb co-transformants (15.05% in total frequency), and 42 plants among the 272 T2 progenies were CrylAb positive but Hpt negative. This suggests that marker-free transgenic plants could be produced by co-transformation mediated by mixed Agrobacterium strains with the selectable marker gene and target gene Southern blot analysis of five independent marker-free T2 transgenic lines co-transformed from Zhejing 22 showed that CrylAb gene had been inserted into rice genome with a single copy. The transgenic plants showed significantly stronger resistance to lepidopteron than the non-transgenic plants under no application of insecticides against lepidopteron.
基金Supported by National Natural Science Foundation of China(NSFC)Grant,No.81070378,and No.81270561Sichuan Outstanding Youth Fund Project Grant,No.2015JQ0060
文摘Gastric cancer(GC)is the third leading cause of cancer-related mortality worldwide.The poorly prognosis and survival of GC are due to diagnose in an advanced,non-curable stage and with a limited response to chemotherapy.The acquisition of drug resistance accounts for the majority of therapy failure of chemotherapy in GC patients.Although the mechanisms of anticancer drug resistance have been broadly studied,the regulation of these mechanisms has not been completely understood.Accumulating evidence has recently highlighted the role of non-coding RNAs(ncRNAs),including long non-coding RNAs and microRNAs,in the development and maintenance of drug resistance due to their regulatory features in specific genes involved in the chemoresistant phenotype of GC.We review the literature on ncRNAs in drug resistance of GC.This review summarizes the current knowledge about the ncRNAs’characteristics,their regulation of the genes involved in chemoresistance and their potential as targeted therapies for personalized treatment in resistant GC.
基金supported by the International Science & Technology Cooperation Program of China (2012DFA30610)the National Natural Science Foundation of China (30571291)the Special Fund for Agro-Scientific Research in the Public Interest, China (201203075-07)
文摘The Citrus tristeza virus (CTV) uses 3 silencing suppressor genes, p20, p23 and p25, to resist the attacks from its Citrus hosts. Inactivating these genes is therefore obviously a potential defensive option in addition to the current control strat-egies including aphid management and the use of mild strain cross protection. In this study, we cloned partial DNA frag-ments from the three genes, and used them to construct vectors for expressing hairpin RNAs (hpRNAs). To facilitate the formation of hpRNAs, the constructs were introduced in a loop structure. Fol owing transformation of sour orange (Citrus aurantium) with these constructs, 8 p20 hpRNA (hp20) and 1 p25 hpRNA (hp25) expressing lines were obtained. The 7 hp20 transgenic lines were further characterized. Their reactions to CTV were tested fol owing inoculation with CT14A and/or TR-L514, both of which are severe strains. Results showed that 3 lines (hp20-5, hp20-6 and hp20-8) were completely resistant to TR-L514 under greenhouse conditions for no detectable viral load was found in their leaves by PCR. However, they exhibited only partial suppression of TR-L514 under screen house conditions since the virus was detected in their leaves, though 2 months later compared to non-transgenic controls. Further tests showed that hp20-5 was tolerant also to CT14A under screen house conditions. The growth of hp20-5 was much better than others including the controls that were concurrently chal enged with CT14A. These results showed that expressing p20 hpRNA was sufifcient to confer sour orange with CTV resistance/tolerance.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.81702435 and 82073133)the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20170264 and BK20191154)the Six Talent Peaks Project in Jiangsu Province(Grant No.WSW-050)。
文摘Chemotherapeutics are validated conventional treatments for patients with advanced cancer.However,with continual application of chemotherapeutics,chemoresistance,which is often predictive of poor prognosis,has gradually become a concern in recent years.Circular RNAs(circ RNAs),a class of endogenous noncoding RNAs(nc RNAs)with a closed-loop structure,have been reported to be notable targets and markers for the prognosis,diagnosis,and treatment of many diseases,particularly cancer.Although dozens of studies have shown that circ RNAs play major roles in drug-resistance activity in tumors,the mechanisms by which circ RNAs affect chemoresistance have yet to be explored.In this review,we describe the detailed mechanisms of circ RNAs and chemotherapeutics in various cancers and summarize potential therapeutic targets for drug-resistant tumors.
文摘BACKGROUND The incidence of colon cancer(CC)is currently high,and is mainly treated with chemotherapy.Oxaliplatin(L-OHP)is a commonly used drug in chemotherapy;however,long-term use can induce drug resistance and seriously affect the prognosis of patients.Therefore,this study investigated the mechanism of Opainteracting protein 5 antisense RNA 1(OIP5-AS1)on L-OHP resistance by determining the expression of OIP5-AS1 and micro RNA-137(miR-137)in CC cells and the effects on L-OHP resistance,with the goal of identifying new targets for the treatment of CC.AIM To study the effects of long non-coding RNA OIP5-AS1 on L-OHP resistance in CC cell lines and its regulation of miR-137.METHODS A total of 114 CC patients admitted to China-Japan Union Hospital of Jilin University were enrolled,and the expression of miR-137 and OIP5-AS1 in tumor tissues and corresponding normal tumor-adjacent tissues was determined.The influence of OIP5-AS1 and miR-137 on the biological behavior of CC cells was evaluated.Resistance to L-OHP was induced in CC cells,and their activity was determined and evaluated using cell counting kit-8.Flow cytometry was used to analyze the apoptosis rate,Western blot to determine the levels of apoptosisrelated proteins,and dual luciferase reporter assay combined with RNA-binding protein immunoprecipitation to analyze the relationship between OIP5-AS1 and miR-137.RESULTS OIP5-AS1 was up-regulated in CC tissues and cells,while miR-137 was downregulated in CC tissues and cells.OIP5-AS1 was inversely correlated with miR-137(P<0.001).Silencing OIP5-AS1 expression significantly hindered the proliferation,invasion and migration abilities of CC cells and markedly increased the apoptosis rate.Up-regulation of miR-137 expression also suppressed these abilities in CC cells and increased the apoptosis rate.Moreover,silencing OIP5-AS1 and up-regulating miR-137 expression significantly intensified growth inhibition of drug-resistant CC cells and improved the sensitivity of CC cells to LOHP.OIP5-AS1 targetedly inhibited miR-137 expression,and silencing OIP5-AS1 reversed the resistance of CC cells to L-OHP by promoting the expression of miR-137.CONCLUSION Highly expressed in CC,OIP5-AS1 can affect the biological behavior of CC cells,and can also regulate the resistance of CC cells to L-OHP by mediating miR-137 expression.
基金The Natural Science Foundation of Shandong Province,No.ZR2020MH238.
文摘Colorectal cancer(CRC)is one of the most common malignancies of the digestive tract,with the annual incidence and mortality increasing consistently.Oxaliplatinbased chemotherapy is a preferred therapeutic regimen for patients with advanced CRC.However,most patients will inevitably develop resistance to oxaliplatin.Many studies have reported that non-coding RNAs(ncRNAs),such as microRNAs,long non-coding RNAs,and circular RNAs,are extensively involved in cancer progression.Moreover,emerging evidence has revealed that ncRNAs mediate chemoresistance to oxaliplatin by transcriptional and post-transcriptional regulation,and by epigenetic modification.In this review,we summarize the mechanisms by which ncRNAs regulate the initiation and development of CRC chemoresistance to oxaliplatin.Furthermore,we investigate the clinical application of ncRNAs as promising biomarkers for liquid CRC biopsy.This review provides new insights into overcoming oxaliplatin resistance in CRC by targeting ncRNAs.
文摘AIM: To investigate the associations between miRNA-103(mi R-103) and insulin resistance and nonalcoholic fatty liver disease(NAFLD).METHODS: Serum samples were collected from 50 NAFLD patients who were overweight or obese(NAFLD group) and from 30 healthy subjects who served as controls(normal control group). Quantitative polymerasechain reaction was used to detect expression of mi R-103. Fasting plasma glucose, fasting insulin, and triglyceride(TG) levels were measured. Homeostasis model assessment was used to evaluate basal insulin resistance(HOMA-IR). Patient height and weight were measured to calculate body mass index(BMI).RESULTS: Compared with the normal control group, higher serum levels of mi R-103 were expressed in the NAFLD group(8.18 ± 0.73 vs 4.23 ± 0.81, P = 0.000). When P = 0.01(bilateral), mi R-103 was positively correlated with HOMA-IR(r = 0.881), TG(r = 0.774) and BMI(r = 0.878), respectively. mi R-103, TG and BMI were all independent factors for HOMAIR(β = 0.438/0.657/0.251, P = 0.000/0.007/0.001). mi R-103, TG, BMI and HOMA-IR were all risk factors for NAFLD(odds ratio = 2.411/16.196/1.574/19.11, P = 0.009/0.022/0.01/0.014).CONCLUSION: mi R-103 is involved in insulin resistance and NAFLD, and may be a molecular link between insulin resistance and NAFLD and a therapeutic target for these disorders.
基金supported by the National Natural Science Foundation of China(Grant No.82072580 and No.81572789).
文摘Abnormal expression of long interspersed element-1(LINE-1)has been implicated in drug resistance,while our previous study showed that chemotherapy drug paclitaxel(PTX)increased LINE-1 level with unknown mechanism.Bioinformatics analysis suggested the regulation of LINE-1 mRNA by drug-induced stress granules(SGs).This study aimed to explore whether and how SGs are involved in drug-induced LINE-1 increase and thereby promotes drug resistance of triple negative breast cancer(TNBC)cells.We demonstrated that SGs increased LINE-1 expression by recruiting and stabilizing LINE-1 mRNA under drug stress,thereby adapting TNBC cells to chemotherapy drugs.Moreover,LINE-1 inhibitor efavirenz(EFV)could inhibit drug-induced SG to destabilize LINE-1.Our study provides the first evidence of the regulation of LINE-1 by SGs that could be an important survival mechanism for cancer cells exposed to chemotherapy drugs.The findings provide a useful clue for developing new chemotherapeutic strategies against TNBCs.
基金supported by the National Natural Science Foundation of China[81202231 to LLH]the Medical Scientific Research Funding of Guangdong Province,China[A2018225 to LLH]+1 种基金the College Students Cultivate Special Science and Technology Innovation from Education Department of Guangdong Province,China[pdjh2016a0212]the Project for Creative Talent of Guangdong Education Department[2014KQNCX102]
文摘Particulate matter (PM), which is a great environmental concern, has been classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC);.Epidemiological and experimental studies have indicated that chronic exposure to PM, especially PM;(particles with an aerodynamic diameter less than
基金Natural Science Foundation of Hubei Province,China,No.2017CFB786Hubei Province Health and Family Planning Scientific Research Project,China,No.WJ2016Y10+2 种基金Jingzhou Science and Technology Bureau Project,China,No.2017-93the College Students Innovative Entrepreneurial Training Program in Yangtze University,China,No.2019376and Postgraduate Innovation Fund Project of Yangtze University,China,No.200202.
文摘The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally.Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes,their clinical success is limited by drug resistance,treatment failure and recurrence of metastatic disease.Therefore,there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies.Circular RNAs(circRNAs)exhibit a covalently closed structure,high stability and biological conservation,and their expression is associated with the occurrence and development of gastrointestinal tumors.Moreover,circRNAs may significantly influence drug resistance of gastrointestinal cancers.In this article,we review the role of circRNAs in the occurrence and development of gastrointestinal cancer,their association with drug resistance,and potential application for early diagnosis,treatment and prognosis in gastrointestinal malignancies.Furthermore,we summarize characteristics of circRNA,including mechanism of formation and biological effects via mRNA sponging,chromatin replication,gene regulation,translational modification,signal transduction,and damage repair.Finally,we discuss whether circRNA-related noninvasive testing may be clinically provided in the future.This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.
基金supported by the National Key Project of transgenic varieties breeding(2009ZX08003-003B)the Light of West Talent Training Project of China(2010-2011)the Project of Sichuan Province Finance Genetic Engineering,China(2011JYGC01-002)
文摘Since maize is one of the most important cereal crops in the world,establishment of an efficient genetic transformation system is critical for its improvement.In the current study,several elite corn lines were tested for suitability of Agrobacterium tumefaciens-mediated transformation by using immature embryos as explants.Infection ability and efficiency of transformation of A.tumefaciens sp.strains EHA105 and LBA4404,different heat treatment times of immature embryos before infection,influence of L-cysteine addition in co-cultivation medium after transformation,and how different ways of selection and cultivation influence the efficiency of transformation were compared.Glyphosate-resistant gene 2mG2-EPSPS was transformed into several typical maize genotypes including 78599,Zong 31 and BA,under the optimum conditions.Results showed that the hypervirulent Agrobacterium tumefaciens sp.strain EHA105 was more infectious than LBA4404.Inclusion of L-cysteine(100 mg L-1) in co-cultivation medium,and heating of the immature embryos for 3 min prior to infection led to a significant increase in the transformation efficiency.Growth in resting medium for 4-10 d and delaying selection was beneficial to the survival of resistant calli.During induction of germination,adding a high concentration of 6-BA(5 mg L-1) and a low concentration of 2,4-D(0.2 mg L-1) to regeneration medium significantly enhanced germination percentage.Using the optimized transformation procedure,more than 800 transgenic plants were obtained from 78599,Zong 31 and BA.By spraying herbicide glyphosate on leaves of transgenic lines,we identified 66 primary glyphosate-resistant plants.The transformation efficiency was 8.2%.PCR and Southern-blot analyses confirmed the integration of the transgenes in the maize genome.
基金supported by the National Basic Research Program of China (973 Program,2007CB1089).
文摘Insect pest and weeds are two major problems for forage and turf grasses. In this study, scarab larvae- and herbicide-resistant transgenic perennial ryegrass (Lolium perenne L.) was obtained by transforming it with cry and bar genes simultaneously via the Agrobacterium-mediated method. To optimize the callus induction and plant regeneration conditions, various concentrations of 2,4-dichlorophenoxyacetic acid and 6-benzylaminopurine were assayed. The transformation efficiencies of different Agrobacterium suspension media, used during Agrobacterium-mediated transformation, were compared. Then, plasmids of pCAMBIA3301 containing cry gene (cry8Ca2 or cry8Ga) and bar gene, driven by ubiquitin promoter, were transformed into perennial ryegrass. The transformants were generated and confirmed by both Southern hybridization analysis and Western hybridization analysis. Further, the resistance of transgenic perennial ryegrass plants to scarab larvae and herbicide were analyzed. After 30 d of co-cultivation with scarab larvae, the damage to the root system of transgenic plants was less than that of non-transgenic control plants. Additionally, the leaves of transgenic plants were resistant to Basta, while leaves of the wild plants wilted after Basta spraying. These results show that cry gene and bar gene were successfully transferred into perennial ryegrass by the Agrobactgerium-mediated method, and convey resistance to scarab larvae and herbicide in transgenic perennial ryegrass plants.
基金supported by grants from National Natural Sciences Foundation of China (No.30070786)Scientific Research Foundation of Hubei Health Department (No.JX2B17)Key Technologies R&D Programme of Hubei Province,China (No.2007AA301C20)
文摘In order to investigate the effects of vector-based hairpin small interference RNA (shRNA) on the reversal of multi-drug resistance (mdr) of A2780/Taxol cells, a novel vector pEGFP-HI/mdrl containing mdrl-shRNA targeting at position 2943-2963 of mdrl was designed and synthesized. Subsequently, A2780/Taxol cells were transfected with pEGFP-H1/rndrl, and the expression ofmdrl mRNA and P-gp was detected by using RT-PCR and Western blot respectively. MTT was used to measure the 50% inhibition concentration (IC50) of Taxol to A2780/Taxol cells. The results showed that at the 24th and 48th h after transfection, the expression of mdrl mRNA was decreased to (52.1±1.0)% and (0.01±1.7)%, and that of P-gp decreased to (88.3±2.1)% and 0%, respectively. At the 48th h after transfection, the relative reversal rate of A2780/Taxol cells to Taxol was 69.54%. In vivo, the nude mice xenografts were injected with pEGFP-H1/mdrl, and then administrated Taxol. The tumor volume in pEGFP-H1/mdrl-transfected group was significantly reduced as compared with that in blank control group or pEGFP-Hl-transfected group (807.20±103.16 vs 1563.78±210.54 or 1480.78±241.24 mm^3, both P〈0.01). These results suggested that transfection of pEGFP-HI/mdrl could efficiently down-regulate the expression of mdrl mRNA and P-gp in A2780/Taxol cells, and effectively restore the sensitivity of A2780/Taxol ceils to Taxol both in vitro and in vivo.
基金Supported by National Natural Science Foundation of China,No.81874206Shanghai Rising-Star Program,No.20QA1409300the Program for Young Eastern Scholar at Shanghai Institutions of Higher Learning,No.QD2019034
文摘BACKGROUND Colorectal cancer(CRC)is a commonly diagnosed cancer of the digestive system worldwide.Although chemotherapeutic agents and targeted therapeutic drugs are currently available for CRC treatment,drug resistance is a problem that cannot be ignored and needs to be solved.AIM To explore the relationship between circular RNA(circRNA)and CRC drug resistance.circRNA plays a key role in the occurrence and development of cancers,but its function in the process of drug resistance has not been widely revealed.METHODS To explore the role of circRNA in 5-fluorouracil(5-Fu)resistance,we performed the circRNA expression profile in two CRC cell lines and their homologous 5-Fu resistant cells by high-throughput sequencing.RESULTS We validated the differentially expressed circRNAs in other two paired CRC cells,confirmed that circ_0002813 and circ_0000236 could have a potential competitive endogenous RNA mechanism and be involved in the formation of 5-Fu resistance.And we combined the sequencing results of mRNA to construct the regulatory network of circRNA-miRNA-mRNA.CONCLUSION Our study revealed that circ_0002813 and circ_0000236 may as the biomarkers to predict the occurrence of 5-Fu resistance in CRC.
基金supported by grants from the Scientific Research Fund of National Health Commission of China-Key Health Science and Technology Program of Zhejiang Province (WKJ-ZJ-2201)the Key Project of Social Welfare Program of Zhejiang Science and Technology Department,“Lingyan” Program (2022C03099)。
文摘Background: Pancreatic ductal adenocarcinoma(PDAC) is one of the most lethal cancers, primarily due to its late diagnosis, high propensity to metastasis, and the development of resistance to chemo-/radiotherapy. Accumulating evidence suggests that long non-coding RNAs(lnc RNAs) are intimately involved in the treatment resistance of pancreatic cancer cells via interacting with critical signaling pathways and may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. Data sources: We carried out a systematic review on lnc RNAs-based research in the context of pancreatic cancer and presented an overview of the updated information regarding the molecular mechanisms underlying lnc RNAs-modulated pancreatic cancer progression and drug resistance, together with their potential value in diagnosis, prognosis, and treatment of PDAC. Literature mining was performed in Pub Med with the following keywords: long non-coding RNA, pancreatic ductal adenocarcinoma, pancreatic cancer up to January 2022. Publications relevant to the roles of lnc RNAs in diagnosis, prognosis, drug resistance, and therapy of PDAC were collected and systematically reviewed. Results: Lnc RNAs, such as HOTAIR, HOTTIP, and PVT1, play essential roles in regulating pancreatic cancer cell proliferation, invasion, migration, and drug resistance, thus may serve as potential diagnostic/prognostic markers or therapeutic targets in PDAC. They participate in tumorigenesis mainly by targeting mi RNAs, interacting with signaling molecules, and involving in the epithelial-mesenchymal transition process. Conclusions: The functional lnc RNAs play essential roles in pancreatic cancer cell proliferation, invasion, migration, and drug resistance and have potential values in diagnosis, prognostic prediction, and treatment of PDAC.
基金the Doctoral Promotion Program Research Initiation Fund of Suzhou Polytechnic Institute of Agriculture(grant number:GSP20200066).
文摘RNA interference,widely regarded as a key mechanism for cells to regulate gene expression,is a natural gene silencing phenomenon.It can be used as the gene knockdown to reverse the multidrug resistance of tumor cells and has been applied in the field of biomedicine,exhibiting huge potential in drug target identification,optimization of drug targets,multidrug resistance,etc.This paper first introduces the mechanism of RNA interference and the formation mechanism of multidrug resistance of tumor cells,on the basis of which it reviews the application and challenges of RNA interference technology in reversing multidrug resistance.Additionally,the development of the siRNA delivery system is illustrated.