DNA double-strand break (DSB) is the most deleterious form of DNA damage and poses great threat to genome stability. Eu- karyotes have evolved complex mechanisms to repair DSBs through coordinated actions of protein...DNA double-strand break (DSB) is the most deleterious form of DNA damage and poses great threat to genome stability. Eu- karyotes have evolved complex mechanisms to repair DSBs through coordinated actions of protein sensors, transducers, and effectors. DSB-induced small RNAs (diRNAs) or Dicer/Drosha-dependent RNAs (DDRNAs) have been recently discovered in plants and vertebrates, adding an unsuspected RNA component into the DSB repair pathway. DiRNAs/DDRNAs control DNA damage response (DDR) activation by affecting DDR loci formation and cell cycle checkpoint enforcement and are required for efficient DSB repair. Here, we summarize the findings of diRNAs/DDRNAs and discuss the possible mechanisms through which they act to facilitate DSB repair.展开更多
The eukaryotic genome is packaged into a complex nucleoprotein structure named chromatin, balancing the compactness of genome and the accessibility of regulatory proteins and RNA polymerases to DNA. The mechanisms of ...The eukaryotic genome is packaged into a complex nucleoprotein structure named chromatin, balancing the compactness of genome and the accessibility of regulatory proteins and RNA polymerases to DNA. The mechanisms of the regulation of chromatin dynamics include the post-translational modification of histones, alteration of nucleosome positions by chromatin remodelers, replacement of canonical histones by histone variants with the aid of histone chaperones, and dynamic organization of the three-dimensional genome in the small nucleus. Histone variants are different from canonical histones by substitution of several amino acid residues or changes in amino acid sequence. Histone variants perform specialized functions such as altering nucleosome stability, dynamics, structure, as well as playing critical roles in a range of biological processes like transcriptional regulation, DNA repair and recombination, development and immune responses. Here we discuss how histone variants, their modification and specific loading to chromatin are involved in transcriptional regulation, DNA repair and plant development.展开更多
基金supported in part by China National Funds for Distinguished Young Scientists(31225015)National Key Scientific Research Program of China(2012CB910900)to Qi YiJun
文摘DNA double-strand break (DSB) is the most deleterious form of DNA damage and poses great threat to genome stability. Eu- karyotes have evolved complex mechanisms to repair DSBs through coordinated actions of protein sensors, transducers, and effectors. DSB-induced small RNAs (diRNAs) or Dicer/Drosha-dependent RNAs (DDRNAs) have been recently discovered in plants and vertebrates, adding an unsuspected RNA component into the DSB repair pathway. DiRNAs/DDRNAs control DNA damage response (DDR) activation by affecting DDR loci formation and cell cycle checkpoint enforcement and are required for efficient DSB repair. Here, we summarize the findings of diRNAs/DDRNAs and discuss the possible mechanisms through which they act to facilitate DSB repair.
基金supported by the National Natural Science Foundation of China(31171168 and 91319304)National Basic Research Program of China(2012CB910503)
文摘The eukaryotic genome is packaged into a complex nucleoprotein structure named chromatin, balancing the compactness of genome and the accessibility of regulatory proteins and RNA polymerases to DNA. The mechanisms of the regulation of chromatin dynamics include the post-translational modification of histones, alteration of nucleosome positions by chromatin remodelers, replacement of canonical histones by histone variants with the aid of histone chaperones, and dynamic organization of the three-dimensional genome in the small nucleus. Histone variants are different from canonical histones by substitution of several amino acid residues or changes in amino acid sequence. Histone variants perform specialized functions such as altering nucleosome stability, dynamics, structure, as well as playing critical roles in a range of biological processes like transcriptional regulation, DNA repair and recombination, development and immune responses. Here we discuss how histone variants, their modification and specific loading to chromatin are involved in transcriptional regulation, DNA repair and plant development.