AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resis...AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resistance in hepatocellular carcinoma(HCC)and to study the efficacy of agonistic TRAIL antibodies,as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis. METHODS:Surface expression of TRAIL receptors (TRAIL-R1-4)and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL were analyzed by flow cytometry and Western blotting,respectively. Knock-down of MCL-1 and BCL-xL was performed by transfecting specific small interfering RNAs.HCC cellswere treated with kinase inhibitors and chemotherapeutic drugs.Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS:TRAIL-R1 and-R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However,treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates.Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002[inhibition of phosphoinositol- 3-kinase(PI3K)],AG1478(epidermal growth factor receptor kinase),PD98059(MEK1),rapamycin(mam- malian target of rapamycin)and the multi-kinase inhibitor Sorafenib.Furthermore,the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL play a major role in TRAIL resistance:knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells.Additionally, knock-down of MCL-1 and BCL-xL led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.CONCLUSION:Our data identify the blockage of survival kinases,combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.展开更多
It is a promising treatment strategy to use a nanoparticle-based drug delivery system for cancer patients, which can simultaneously deliver multiple drugs or genes in combination with therapy to induce synergistic eff...It is a promising treatment strategy to use a nanoparticle-based drug delivery system for cancer patients, which can simultaneously deliver multiple drugs or genes in combination with therapy to induce synergistic effects and suppress drug resistance to the tumor. In this study, cationic nanostructured lipid carriers(cNLC) for co-loading anionic small-interfering RNAs(siRNA) and chemotherapeutic docetaxel(DTX) were prepared from different cationic lipids based on particle distribution and loading efficiency. In order to increase the cNLC's positive targeting capacity, a novel peptide SP94 was bound to the surface of cNLC(SP94-cNLC). The cNLC showed good efficiency in loading siRNA and DTX. The SP94-cNLC revealed a better cytotoxicity compared with cNLC and Taxotere?, indicating that SP94 could successfully enhance the internalization capacity of nanoparticles to the liver cancer cells. This new type of cNLC is a potential vehicle when using in co-delivery of chemotherapeutics and siRNAs. The curcumin(CUR)/DTX co-delivery NLC could load both CUR and DTX in high efficiency and showed a sensibilization to DTX chemotherapy. The sensibilization was more obvious when it was used in the aggressive and resistant cancer cells. This CUR/DTX co-delivery system had good potential in treating cancer cells when chemotherapy drug showed little effect alone.展开更多
基金Supported by Research grants from Merck KGaA,Darmstadt,Germany,to Schulze-Bergkamen H
文摘AIM:To analyze the effect of chemotherapeutic drugs and specific kinase inhibitors,in combination with the death receptor ligand tumor necrosis factor-related apoptosis inducing ligand(TRAIL),on overcoming TRAIL resistance in hepatocellular carcinoma(HCC)and to study the efficacy of agonistic TRAIL antibodies,as well as the commitment of antiapoptotic BCL-2 proteins, in TRAIL-induced apoptosis. METHODS:Surface expression of TRAIL receptors (TRAIL-R1-4)and expression levels of the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL were analyzed by flow cytometry and Western blotting,respectively. Knock-down of MCL-1 and BCL-xL was performed by transfecting specific small interfering RNAs.HCC cellswere treated with kinase inhibitors and chemotherapeutic drugs.Apoptosis induction and cell viability were analyzed via flow cytometry and 3-(4,5-Dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. RESULTS:TRAIL-R1 and-R2 were profoundly expressed on the HCC cell lines Huh7 and Hep-G2. However,treatment of Huh7 and Hep-G2 with TRAIL and agonistic antibodies only induced minor apoptosis rates.Apoptosis resistance towards TRAIL could be considerably reduced by adding the chemotherapeutic drugs 5-fluorouracil and doxorubicin as well as the kinase inhibitors LY294002[inhibition of phosphoinositol- 3-kinase(PI3K)],AG1478(epidermal growth factor receptor kinase),PD98059(MEK1),rapamycin(mam- malian target of rapamycin)and the multi-kinase inhibitor Sorafenib.Furthermore,the antiapoptotic BCL-2 proteins MCL-1 and BCL-xL play a major role in TRAIL resistance:knock-down by RNA interference increased TRAIL-induced apoptosis of HCC cells.Additionally, knock-down of MCL-1 and BCL-xL led to a significant sensitization of HCC cells towards inhibition of both c-Jun N-terminal kinase and PI3K.CONCLUSION:Our data identify the blockage of survival kinases,combination with chemotherapeutic drugs and targeting of antiapoptotic BCL-2 proteins as promising ways to overcome TRAIL resistance in HCC.
基金National Natural Science Foundation of China(Gr ant No.81273454)Beijing Natural Science Foundation(Grant No.7132113)Doctoral Foundation of the Ministry of Education(Grant No.20100001110056 and 20130001110055)
文摘It is a promising treatment strategy to use a nanoparticle-based drug delivery system for cancer patients, which can simultaneously deliver multiple drugs or genes in combination with therapy to induce synergistic effects and suppress drug resistance to the tumor. In this study, cationic nanostructured lipid carriers(cNLC) for co-loading anionic small-interfering RNAs(siRNA) and chemotherapeutic docetaxel(DTX) were prepared from different cationic lipids based on particle distribution and loading efficiency. In order to increase the cNLC's positive targeting capacity, a novel peptide SP94 was bound to the surface of cNLC(SP94-cNLC). The cNLC showed good efficiency in loading siRNA and DTX. The SP94-cNLC revealed a better cytotoxicity compared with cNLC and Taxotere?, indicating that SP94 could successfully enhance the internalization capacity of nanoparticles to the liver cancer cells. This new type of cNLC is a potential vehicle when using in co-delivery of chemotherapeutics and siRNAs. The curcumin(CUR)/DTX co-delivery NLC could load both CUR and DTX in high efficiency and showed a sensibilization to DTX chemotherapy. The sensibilization was more obvious when it was used in the aggressive and resistant cancer cells. This CUR/DTX co-delivery system had good potential in treating cancer cells when chemotherapy drug showed little effect alone.