母猪的子宫和卵巢组织发育情况直接影响母猪的繁殖性能,进而对养猪业的经济效益造成重大影响。为探究姜曲海猪子宫和卵巢发育的分子机理,本研究选取1月龄和8月龄姜曲海猪各3头,利用转录组测序技术(RNA-Seq)对子宫和卵巢组织进行测序,通...母猪的子宫和卵巢组织发育情况直接影响母猪的繁殖性能,进而对养猪业的经济效益造成重大影响。为探究姜曲海猪子宫和卵巢发育的分子机理,本研究选取1月龄和8月龄姜曲海猪各3头,利用转录组测序技术(RNA-Seq)对子宫和卵巢组织进行测序,通过生物信息学手段筛选差异表达基因并进行基因本体(Gene ontology,GO)和京都基因和基因组百科全书(Kyoto ncyclopedia of genes and genomes,KEGG)富集分析,再与猪数量性状基因座(Quantitative trait locus,QTL)数据库比对后鉴定出重要的候选基因。结果显示,1月龄和8月龄姜曲海猪子宫组织中有1688个差异表达基因,表达上调和下调的基因各844个;卵巢组织中存在3833个差异表达基因,其中2831个表达上调,1002个表达下调。富集分析结果显示这些差异表达基因主要显著富集于动物器官发育、组织发育和细胞分化等生物学过程。本研究在子宫和卵巢组织中分别筛选出11个和31个与发育性状有关的候选基因,其中共有的候选基因有6个,分别为LHFPL1、MTUS2、LIF、RBP4、EPHB2和TESC。本研究结果为姜曲海猪子宫和卵巢发育分子层面的研究提供了参考,也为今后姜曲海猪繁殖性状的分子改良提供了新的研究方向。展开更多
Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,...Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.展开更多
Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) ...Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.展开更多
Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark ...Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark of Magnoliaceae plants.It also has anti-infection,antitumor,and immunomodulatory effects.In this study,we found that honokiol induces cell apoptosis in the human glioma cell lines U87-MG and U251-MG.However,the mechanism through which honokiol regulates glioma cell apoptosis is still unknown.Methods:We performed RNA-seq analysis of U251-MG cells treated with honokiol and control cells.Protein-protein interaction(PPI)network analysis was performed,and the 10 top hub unigenes were examined via real-time quantitative PCR.Furthermore,MAPK signaling and ferroptosis were detected via western blotting.Results:332 differentially expressed genes(DEGs)were found,comprising 163 increased and 169 decreased genes.Analysis of the DEGs revealed that various biological processes were enriched,including‘response to hypoxia’,‘cerebellum development cellular response to hypoxia,’‘iron ion binding,’‘oxygen transporter activity,’‘oxygen binding,’‘ferric iron binding,’and‘structural constituent of cytoskeleton.’Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that the DEGs were enriched in the following pathways:‘mitogen-activated protein kinases(MAPK)’,‘Hypoxia-inducible factor 1(HIF-1)’,‘ferroptosis,’‘Peroxisome proliferator-activated receptor(PPAR),’‘Phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)-protein kinase B(Akt),’and‘phagosome.’Among these pathways,the MAPK signaling pathway and ferroptosis were verified.Conclusion:This study revealed the potential mechanism by which honokiol induces apoptosis and provided a comprehensive analysis of DEGs in honokiol-treated U251-MG cells and the associated signaling pathways.These data could lead to new ideas for future research and therapy for patients with glioma.展开更多
Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidat...Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus(Af)using an RNAseq approach in CC lines and hepatic gene expression.Methods:We studied 31 male mice from 25 CC lines at 8 weeks old;the mice were infected with Af.Liver tissues were extracted from these mice 5 days post-infection,and next-generation RNA-sequencing(RNAseq)was performed.The GENE-E analysis platform was used to generate a clustered heat map matrix.Results:Significant variation in body weight changes between CC lines was ob-served.Hepatic gene expression revealed 12 top prioritized candidate genes differ-entially expressed in resistant versus susceptible mice based on body weight changes.Interestingly,three candidate genes are located within genomic intervals of the previ-ously mapped quantitative trait loci(QTL),including Gm16270 and Stox1 on chromo-some 10 and Gm11033 on chromosome 8.Conclusions:Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af.As a next step,eQTL analysis will be performed for our RNA-Seq data.Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.展开更多
文摘母猪的子宫和卵巢组织发育情况直接影响母猪的繁殖性能,进而对养猪业的经济效益造成重大影响。为探究姜曲海猪子宫和卵巢发育的分子机理,本研究选取1月龄和8月龄姜曲海猪各3头,利用转录组测序技术(RNA-Seq)对子宫和卵巢组织进行测序,通过生物信息学手段筛选差异表达基因并进行基因本体(Gene ontology,GO)和京都基因和基因组百科全书(Kyoto ncyclopedia of genes and genomes,KEGG)富集分析,再与猪数量性状基因座(Quantitative trait locus,QTL)数据库比对后鉴定出重要的候选基因。结果显示,1月龄和8月龄姜曲海猪子宫组织中有1688个差异表达基因,表达上调和下调的基因各844个;卵巢组织中存在3833个差异表达基因,其中2831个表达上调,1002个表达下调。富集分析结果显示这些差异表达基因主要显著富集于动物器官发育、组织发育和细胞分化等生物学过程。本研究在子宫和卵巢组织中分别筛选出11个和31个与发育性状有关的候选基因,其中共有的候选基因有6个,分别为LHFPL1、MTUS2、LIF、RBP4、EPHB2和TESC。本研究结果为姜曲海猪子宫和卵巢发育分子层面的研究提供了参考,也为今后姜曲海猪繁殖性状的分子改良提供了新的研究方向。
基金supported by the National Natural Science Foundation of China(82271645)National Key Research and Development Program of China(2021YFC2700200 to F.S.)。
文摘Meiosis is a highly complex process significantly influenced by transcriptional regulation.However,studies on the mechanisms that govern transcriptomic changes during meiosis,especially in prophase I,are limited.Here,we performed single-cell ATAC-seq of human testis tissues and observed reprogramming during the transition from zygotene to pachytene spermatocytes.This event,conserved in mice,involved the deactivation of genes associated with meiosis after reprogramming and the activation of those related to spermatogenesis before their functional onset.Furthermore,we identified 282 transcriptional regulators(TRs)that underwent activation or deactivation subsequent to this process.Evidence suggested that physical contact signals from Sertoli cells may regulate these TRs in spermatocytes,while secreted ENHO signals may alter metabolic patterns in these cells.Our results further indicated that defective transcriptional reprogramming may be associated with non-obstructive azoospermia(NOA).This study revealed the importance of both physical contact and secreted signals between Sertoli cells and germ cells in meiotic progression.
基金supported by the Agricultural Research Development Agency of Thailand (Grant No.PRP6405030280)Research Promotion fund for International and Educational Excellence, Thailand (Grant No.08/2562)。
文摘Prezygotic isolation is important for successful fertilization in rice, significantly affecting yield. This study focused on F_(5:6) generation plants derived from inter-subspecific crosses(Nipponbare × KDML105) with low(LS) and high seed-setting rates(HS), in which normal pollen fertility was observed. However, LS plants showed a reduced number of pollen grains adhering to the stigma and fewer pollen tubes reaching the ovules at 4-5 h post-pollination, compared with HS plants. Bulked segregant RNA-Seq analysis of pollinated pistils from the HS and LS groups revealed 249 and 473 differentially expressed genes(DEGs), respectively. Kyoto Encyclopedia of Genes and Genomes analysis of the HS and LS-specific DEGs indicated enrichment in metabolic pathways, pentose and glucuronate interconversions, and flavonoid biosynthesis. Several of these DEGs exhibited co-expression with pollen development genes and formed extensive clusters of co-expression networks. Compared with LS pistils, enzyme genes controlling pectin degradation, such as OsPME35 and OsPLL9, showed similar expression patterns, with higher levels in HS pistils pre-pollination. Os02g0467600, similar to cinnamate 4-hydroxylase gene(CYP73), involved in flavonoid biosynthesis, displayed higher expression in HS pistils post-pollination. Our findings suggest that OsPME35, OsPLL9, and Os02g0467600 contribute to prezygotic isolation by potentially modifying the stigma cell wall(OsPME35 and OsPLL9) and controlling later processes such as pollen-stigma adhesion(Os02g0467600) genes. Furthermore, several DEGs specific to HS and LS were co-localized with QTLs and functional genes associated with spikelet fertility. These findings provide valuable insights for further research on rice spikelet fertility, ultimately contributing to the development of high-yielding rice varieties.
基金The study was supported by the Natural Science Foundation of Jilin Province(Grant No.20200201444JC).
文摘Background:Glioma is a kind of tumor that easily deteriorates and originates from glial cells in nerve tissue.Honokiol is a bisphenol compound that is an essential monomeric compound extracted from the roots and bark of Magnoliaceae plants.It also has anti-infection,antitumor,and immunomodulatory effects.In this study,we found that honokiol induces cell apoptosis in the human glioma cell lines U87-MG and U251-MG.However,the mechanism through which honokiol regulates glioma cell apoptosis is still unknown.Methods:We performed RNA-seq analysis of U251-MG cells treated with honokiol and control cells.Protein-protein interaction(PPI)network analysis was performed,and the 10 top hub unigenes were examined via real-time quantitative PCR.Furthermore,MAPK signaling and ferroptosis were detected via western blotting.Results:332 differentially expressed genes(DEGs)were found,comprising 163 increased and 169 decreased genes.Analysis of the DEGs revealed that various biological processes were enriched,including‘response to hypoxia’,‘cerebellum development cellular response to hypoxia,’‘iron ion binding,’‘oxygen transporter activity,’‘oxygen binding,’‘ferric iron binding,’and‘structural constituent of cytoskeleton.’Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis revealed that the DEGs were enriched in the following pathways:‘mitogen-activated protein kinases(MAPK)’,‘Hypoxia-inducible factor 1(HIF-1)’,‘ferroptosis,’‘Peroxisome proliferator-activated receptor(PPAR),’‘Phosphatidylinositol-4,5-bisphosphate 3-kinase(PI3K)-protein kinase B(Akt),’and‘phagosome.’Among these pathways,the MAPK signaling pathway and ferroptosis were verified.Conclusion:This study revealed the potential mechanism by which honokiol induces apoptosis and provided a comprehensive analysis of DEGs in honokiol-treated U251-MG cells and the associated signaling pathways.These data could lead to new ideas for future research and therapy for patients with glioma.
基金European Sequencing and Genotyping Institutes(ESGI),Grant/Award Number:075491/Z/04,085906/Z/08/Z and 090532/Z/09/ZTel-Aviv University(TAU)。
文摘Background:Aspergillus fumigatus(Af)is one of the most ubiquitous fungi and its infection potency is suggested to be strongly controlled by the host genetic back-ground.The aim of this study was to search for candidate genes associated with host susceptibility to Aspergillus fumigatus(Af)using an RNAseq approach in CC lines and hepatic gene expression.Methods:We studied 31 male mice from 25 CC lines at 8 weeks old;the mice were infected with Af.Liver tissues were extracted from these mice 5 days post-infection,and next-generation RNA-sequencing(RNAseq)was performed.The GENE-E analysis platform was used to generate a clustered heat map matrix.Results:Significant variation in body weight changes between CC lines was ob-served.Hepatic gene expression revealed 12 top prioritized candidate genes differ-entially expressed in resistant versus susceptible mice based on body weight changes.Interestingly,three candidate genes are located within genomic intervals of the previ-ously mapped quantitative trait loci(QTL),including Gm16270 and Stox1 on chromo-some 10 and Gm11033 on chromosome 8.Conclusions:Our findings emphasize the CC mouse model's power in fine mapping the genetic components underlying susceptibility towards Af.As a next step,eQTL analysis will be performed for our RNA-Seq data.Suggested candidate genes from our study will be further assessed with a human cohort with aspergillosis.