RNA sequencing is the use of hight hroughput next generation sequencing technology to survey, characterize, and quantify the transcriptome of a genome. RNA sequencing has been used to analyze the pathogenesis of sever...RNA sequencing is the use of hight hroughput next generation sequencing technology to survey, characterize, and quantify the transcriptome of a genome. RNA sequencing has been used to analyze the pathogenesis of several malignancies such melanoma, lung cancer, and colorectal cancer. RNA sequencing can identify differential expression of genes(DEG's), mutated genes, fusion genes, and gene isoforms in disease states. RNA sequencing has been used in the investigation of several colorectal diseases such as colorectal cancer, inflammatory bowel disease(ulcerative colitis and Crohn's disease), and irritable bowel syndrome.展开更多
Our aim is to study the roles of a new emerging group of non-coding RNAs, circRNAs, in tomato(Solanum lycopersicum L.) plants grown at the combination of drought and heat, two of the most usual stress conditions known...Our aim is to study the roles of a new emerging group of non-coding RNAs, circRNAs, in tomato(Solanum lycopersicum L.) plants grown at the combination of drought and heat, two of the most usual stress conditions known to frequently happen in field. Tomato seedlings from cultivar‘Jinling Meiyu’ were treated without stresses(control), at water shortage, high temperature and subjected the multiple stresses. In total, 467 circRNAs were identified with 87.82% from exon using high throughput sequencing technology. Among the circRNAs, 70 were from chr1 with the range from 23 to 49 from the other chromosomes. In detail, 156 circRNAs were shared in the four libraries, while 21, 17 and 36 circRNAs were only shown in drought, heat and multiple stresses libraries, respectively. Through a differential expression analysis, four, seven and nine circRNAs were differentially regulated in tomato at drought, heat and multiple stresses as compared with control. These circRNAs played roles on photosynthesis, starch and sucrose metabolism, RNA transport, RNA degradation, spliceosome, ribosome, etc. Our study underlined the potential role of circRNAs involved in the abiotic stress response in tomato, which might pave the way for studying biological roles of circRNAs responding to multiple stresses in plants.展开更多
In order to reveal the influence of different plant configurations on the microbial community structure and diversity in rhizosphere soil of Cotinus coggygria in Fragrant Hills park,the ITS+5.8S rDNA gene and 16S rDNA...In order to reveal the influence of different plant configurations on the microbial community structure and diversity in rhizosphere soil of Cotinus coggygria in Fragrant Hills park,the ITS+5.8S rDNA gene and 16S rDNA gene V3-V4 region sequencing analysis for fungi and bacteria,respectively,were conducted by high throughput sequencing(Illumina MiSeq).The results showed that the fungal diversity in the rhizosphere soil samples of C.coggygria in Fragrant Hills park in 2018 was significantly higher than that in 2016,and it was higher in the rhizosphere soil of healthy C.coggygria in Xunlupo than that in diseased ones in 2018.Verticillium dahliae,which is the causal agent of C.coggygria wilt,was detected in five soil samples.In 2018,the bacterial diversity in the rhizosphere soil of diseased C.coggygria in Xunlupo was the lowest,while it was the highest in the rhizosphere soil of healthy C.coggygria under Platycladus orientalis in Langfengting.展开更多
Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and h...Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.展开更多
This study was conducted to investigate the phylogenetic diversity of archaea in the rumen of adult and elderly yaks. Six domesticated female yaks, 3 adult yaks ((5.3±0.6) years old), and 3 elderly yaks ((1...This study was conducted to investigate the phylogenetic diversity of archaea in the rumen of adult and elderly yaks. Six domesticated female yaks, 3 adult yaks ((5.3±0.6) years old), and 3 elderly yaks ((10.7±0.6) years old), were used for the rumen contents collection. Illumina MiSeq high-throughput sequencing technology was applied to examine the archaeal composition of rumen contents. A total of 92 901 high-quality archaeal sequences were analyzed, and these were assigned to 2 033 operational taxonomic units (OTUs). Among these, 974 OTUs were unique to adult yaks while 846 OTUs were unique to elderly yaks; 213 OTUs were shared by both groups. At the phylum level, more than 99% of the obtained OTUs belonged to the Euryarchaeota phylum. At the genus level, the archaea could be divided into 7 archaeal genera. The 7 genera (i.e., Methanobrevibacter, Methanobacterium, Methanosphaera, Thermogymnomonas, Methanomicrobiu, Meth- animicrococcus and the unclassified genus) were shared by all yaks, and their total abundance accounted for 99% of the rumen archaea. The most abundant archaea in elderly and adult yaks were Methanobrevibacterand Thermogymnomonas, respectively. The abundance of Methanobacteria (class), Methanobacteriales (order), Methanobacteriaceae (family), and Methanobrevibacter (genus) in elderly yaks was significantly higher than in adult yaks. In contrast, the abundance of Ther-mogymnomonas in elderly yaks was 34% lower than in adult yaks, though the difference was not statistically significant. The difference in abundance of other archaea was not significant between the two groups. These results suggested that the structure of archaea in the rumen of yaks changed with age. This is the first study to compare the phytogenetic differences of rumen archaeal structure and composition using the yak model.展开更多
Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has...Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has enabled the identification of RNA edits at unprecedented throughput and resolution. However, our knowledge of RNA editing in swine is still limited.Results: Here, we utilized RES-Scanner to identify RNA editing sites in the brain, subcutaneous fat, heart, liver,muscle, lung and ovary in three 180-day-old Large White gilts based on matched strand-specific RNA sequencing and whole-genome resequencing datasets. In total, we identified 74863 editing sites, and 92.1% of these sites caused adenosine-to-guanosine(A-to-G) conversion. Most A-to-G sites were located in noncoding regions and generally had low editing levels. In total, 151 A-to-G sites were detected in coding regions(CDS), including 94 sites that could lead to nonsynonymous amino acid changes. We provide further evidence supporting a previous observation that pig transcriptomes are highly editable at PRE-1 elements. The number of A-to-G editing sites ranged from 4155(muscle) to 25001(brain) across the seven tissues. The expression levels of the ADAR enzymes could explain some but not all of this variation across tissues. The functional analysis of the genes with tissuespecific editing sites in each tissue revealed that RNA editing might play important roles in tissue function.Specifically, more pathways showed significant enrichment in the fat and liver than in other tissues, while no pathway was enriched in the muscle.Conclusions: This study identified a total of 74863 nonredundant RNA editing sites in seven tissues and revealed the potential importance of RNA editing in tissue function. Our findings largely extend the porcine editome and enhance our understanding of RNA editing in swine.展开更多
Huguangyan Maar Lake is a typical maar lake in the southeast of China. It is well preserved and not disturbed by anthropogenic activities. In this study, microbial community structures in sediment and water samples fr...Huguangyan Maar Lake is a typical maar lake in the southeast of China. It is well preserved and not disturbed by anthropogenic activities. In this study, microbial community structures in sediment and water samples from Huguangyan Maar Lake were investigated using a high-throughput sequencing method. We found significant differences between the microbial community compositions of the water and the sediment. The sediment samples contained more diverse Bacteria and Archaea than did the water samples. Actinobacteria, Betaproteobacteria, Cyanobacteria, and Deltaproteobacteria predominated in the water samples while Deltaproteobacteria, Anaerolineae, Nitrospira, and Dehalococcoidia were the major bacterial groups in the sediment. As for Archaea, Woesearchaeota (DHVEG-6), unclassified Archaea, and Deep Sea Euryarchaeotic Group were detected at higher abundances in the water, whereas the Miscellaneous Crenarchaeotic Group, Thermoplasmata, and Methanomicrobia were significantly more abundant in the sediment. Interactions between Bacteria and Archaea were common in both the water column and the sediment. The concentrations of major nutrients (NO^3-, PO4^3-, SiO3^2- and NH4^+) shaped the microbial population structures in the water. At the higher phylogenetic levels including phylum and class, many of the dominant groups were those that were also abundant in other lakes;however, novel microbial populations (unclassified) were often seen at the lower phylogenetic levels. Our study lays a foundation for examining microbial biogeochemical cycling in sequestered lakes or reservoirs.展开更多
Differentially expressed genes are thought to regulate the development and progression of oral squamous cell carcinomas (OSCC). The purpose of this study was to screen differentially expressed mRNAs in OSCC and matc...Differentially expressed genes are thought to regulate the development and progression of oral squamous cell carcinomas (OSCC). The purpose of this study was to screen differentially expressed mRNAs in OSCC and matched paraneoplastic normal tissues, and to explore the intrinsic mechanism of OSCC development and progres- sion. We obtained the differentially expressed mRNA expression profiles in 10 pairs of fresh-frozen OSCC tissue specimens and matched paraneoplastic normal tissue specimens by high-throughput RNA sequencing. By using Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the functional significance of the differentially expressed genes were analyzed. We identified 1,120 sig- nificantly up-regulated mRNAs and 178 significantly down-regulated mRNAs in OSCC, compared to normal tissue. The differentially expressed mRNAs were involved in 20 biological processes and 68 signal pathways. Compared to adjacent normal tissue, the expression of MAGEAll was up-regulated; TCHH was down-regulated. These find- ings were verified by real-time PCR. These differentially expressed mRNAs may function as oncogenes or tumor suppressors in the development and progression of OSCC. This study provides novel insights into OSCC. However, further work is needed to determine if these differentially expressed mRNAs have potential roles as diagnostic bio- markers and candidate therapeutic targets for OSCC.展开更多
We used Illumina high-throughput sequencing of PCR-amplified V3-V4 16 S rRNA gene regions to characterize bacterial communities associated with the adductor muscles, gills, gonads and intestines of the Yesso scallop(P...We used Illumina high-throughput sequencing of PCR-amplified V3-V4 16 S rRNA gene regions to characterize bacterial communities associated with the adductor muscles, gills, gonads and intestines of the Yesso scallop(Patinopecten yessoensis) from waters around Zhangzidao, Dalian, China. Overall, 421,276 optimized reads were classified as 25 described bacterial phyla and 308 genera. Firmicutes, Proteobacteria, Tenericutes, Bacteroidetes, Chlamydiae and Spirochaetae accounted for > 97% of the total reads in the four organs. The bacterial 16 S rDNA sequences assigned to Firmicutes and Proteobacteria were abundant in the adductor muscles, gills and gonads; while reads from Tenericutes were dominant in the intestines, followed by those from Firmicutes, Chlamydiae, Proteobacteria and Bacteroidetes. At the genus level, the dominant genera in the adductor muscles, gills and gonads appeared to be Bacillus, Enterococcus and Lactococcus, whereas Mycoplasma was dominant in the intestines. The relative abundances of Bacillus, Enterococcus, Lactococcus, Alkaliphilus, Raoultella, Paenibacillus and Oceanobacillus were significantly lower in the intestine than in the other three organs. Cluster analysis and principal coordinates analysis of the operational taxonomy units profile revealed significant differences in the bacterial community structure between the intestine and the other three organs. Taken together, these results suggest that scallops have intestine-specific bacterial communities and the adductor muscles, gills and gonads harbor similar communities. The difference in the bacterial community between organs may relate to unique habitats, surroundings, diet and their respective physiological functions.展开更多
Airborne particulate matter(PM),especially PM2.5,can be easily adsorbed by human respiratory system.Their roles in carrying pathogens for spreading epidemic diseases has attracted great concern.Herein,we developed a n...Airborne particulate matter(PM),especially PM2.5,can be easily adsorbed by human respiratory system.Their roles in carrying pathogens for spreading epidemic diseases has attracted great concern.Herein,we developed a novel gelatin filter-based and culture-independent method for investigation of the microbial diversity in PM samples during a haze episode in Tianjin,China.This method involves particle capture by gelatin filters,filter dissolution for DNA extraction,and high-throughput sequencing for analysis of the microbial diversity.A total of 584 operational taxonomic units(OTUs)of bacteria and 370 OTUs of fungi at the genus level were identified during hazy days.The results showed that both bacterial and fungal diversities could be evaluated by this method.This study provides a convenient strategy for investigation of microbial biodiversity in haze,facilitating accurate evaluation of airborne epidemic diseases.展开更多
miRNAs regulate a variety of biological processes through pairing-based regulation of gene expression at the 3' end of the noncoding region of the target miRNA, miRNAs were found to be abnormally expressed in ischemi...miRNAs regulate a variety of biological processes through pairing-based regulation of gene expression at the 3' end of the noncoding region of the target miRNA, miRNAs were found to be abnormally expressed in ischemia/reperfusion injury models. High-throughput sequencing is a recently developed method for sequencing miRNAs and has been widely used in the analysis of miRNAs. In this study, ischemia/reperfusion injury models were intracerebroventricularly injected with 50 pg/kg apelin-13. High-throughput sequencing showed that 357 known miRNAs were differentially expressed among rat models, among which 78 changed to 〉 2-fold or 〈 0.5-fold. Quantita- tive real-time polymerase chain reaction was selected to confirm the expression levels of four miRNAs that were differentially expressed, the results of which were consistent with the results of high-throughput sequencing. Gene Ontology analysis revealed that the predicted targets of the different miRNAs are particularly associated with cellular process, metabolic process, single-organism process, cell, and binding. Kyoto Encyclopedia of Gene and Genome analysis showed that the target genes are involved in metabolic pathways, mitogen-ac- tivated protein kinase signaling pathway, calcium signaling pathway, and nuclear factor-KB signaling pathway. Our findings suggest that differentially expressed miRNAs and their target genes play an important role in ischemia/reperfusion injury and neuroprotection by apelin-13.展开更多
supported in part by grants from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB15010103);the National Natural Science Foundation of China (41201247)
The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA...The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA) to fine map significant agronomic trait genes by developing polymorphism molecular markers at the transcriptome level. In this study, transcriptome sequencing of high growth (GD) and low growth (BD) samples of G. biloba half-sib families was performed. After assembling the clean reads, 601 differential expression genes were detected and 513 of them were assigned functional annotations. Single nucleotide polymorphism (SNP) analysis identified SNPs associated with 119 genes in the GD and BD groups;58 of these genes were annotated. Two Homeobox-leucine zipper protein genes were up-regulated in the GD group compared with the BD group;therefore, these are very likely related to high growth of G. biloba. This study provides molecular level data that could be used for seed selection of high growth G. biloba half-sib families for future breeding programs.展开更多
文摘RNA sequencing is the use of hight hroughput next generation sequencing technology to survey, characterize, and quantify the transcriptome of a genome. RNA sequencing has been used to analyze the pathogenesis of several malignancies such melanoma, lung cancer, and colorectal cancer. RNA sequencing can identify differential expression of genes(DEG's), mutated genes, fusion genes, and gene isoforms in disease states. RNA sequencing has been used in the investigation of several colorectal diseases such as colorectal cancer, inflammatory bowel disease(ulcerative colitis and Crohn's disease), and irritable bowel syndrome.
基金funding from National Natural Science Foundation of China (Grant No. 31601745)Natural Science Foundation of Jiangsu Province (Grant No. BK20160579)Aarhus University Research Foundation (Grant No. 30379)
文摘Our aim is to study the roles of a new emerging group of non-coding RNAs, circRNAs, in tomato(Solanum lycopersicum L.) plants grown at the combination of drought and heat, two of the most usual stress conditions known to frequently happen in field. Tomato seedlings from cultivar‘Jinling Meiyu’ were treated without stresses(control), at water shortage, high temperature and subjected the multiple stresses. In total, 467 circRNAs were identified with 87.82% from exon using high throughput sequencing technology. Among the circRNAs, 70 were from chr1 with the range from 23 to 49 from the other chromosomes. In detail, 156 circRNAs were shared in the four libraries, while 21, 17 and 36 circRNAs were only shown in drought, heat and multiple stresses libraries, respectively. Through a differential expression analysis, four, seven and nine circRNAs were differentially regulated in tomato at drought, heat and multiple stresses as compared with control. These circRNAs played roles on photosynthesis, starch and sucrose metabolism, RNA transport, RNA degradation, spliceosome, ribosome, etc. Our study underlined the potential role of circRNAs involved in the abiotic stress response in tomato, which might pave the way for studying biological roles of circRNAs responding to multiple stresses in plants.
基金Supported by Science and Technology Project from the Beijing Municipal Administration Center of Parks(ZX2018016).
文摘In order to reveal the influence of different plant configurations on the microbial community structure and diversity in rhizosphere soil of Cotinus coggygria in Fragrant Hills park,the ITS+5.8S rDNA gene and 16S rDNA gene V3-V4 region sequencing analysis for fungi and bacteria,respectively,were conducted by high throughput sequencing(Illumina MiSeq).The results showed that the fungal diversity in the rhizosphere soil samples of C.coggygria in Fragrant Hills park in 2018 was significantly higher than that in 2016,and it was higher in the rhizosphere soil of healthy C.coggygria in Xunlupo than that in diseased ones in 2018.Verticillium dahliae,which is the causal agent of C.coggygria wilt,was detected in five soil samples.In 2018,the bacterial diversity in the rhizosphere soil of diseased C.coggygria in Xunlupo was the lowest,while it was the highest in the rhizosphere soil of healthy C.coggygria under Platycladus orientalis in Langfengting.
基金Supported by the National Natural Science Foundations of China(3127218631301791)
文摘Gene sequencing is a great way to interpret life, and high-throughput sequencing technology is a revolutionary technological innovation in gene sequencing researches. This technology is characterized by low cost and high-throughput data. Currently, high-throughput sequencing technology has been widely applied in multi-level researches on genomics, transcriptomics and epigenomics. And it has fundamentally changed the way we approach problems in basic and translational researches and created many new possibilities. This paper presented a general description of high-throughput sequencing technology and a comprehensive review of its application with plain, concisely and precisely. In order to help researchers finish their work faster and better, promote science amateurs and understand it easier and better.
基金the International Cooperation Project of the Ministry of Sciences and Technology of China(2014DFA32860)the National Natural Science Foundation of China(31402104)for their financial support
文摘This study was conducted to investigate the phylogenetic diversity of archaea in the rumen of adult and elderly yaks. Six domesticated female yaks, 3 adult yaks ((5.3±0.6) years old), and 3 elderly yaks ((10.7±0.6) years old), were used for the rumen contents collection. Illumina MiSeq high-throughput sequencing technology was applied to examine the archaeal composition of rumen contents. A total of 92 901 high-quality archaeal sequences were analyzed, and these were assigned to 2 033 operational taxonomic units (OTUs). Among these, 974 OTUs were unique to adult yaks while 846 OTUs were unique to elderly yaks; 213 OTUs were shared by both groups. At the phylum level, more than 99% of the obtained OTUs belonged to the Euryarchaeota phylum. At the genus level, the archaea could be divided into 7 archaeal genera. The 7 genera (i.e., Methanobrevibacter, Methanobacterium, Methanosphaera, Thermogymnomonas, Methanomicrobiu, Meth- animicrococcus and the unclassified genus) were shared by all yaks, and their total abundance accounted for 99% of the rumen archaea. The most abundant archaea in elderly and adult yaks were Methanobrevibacterand Thermogymnomonas, respectively. The abundance of Methanobacteria (class), Methanobacteriales (order), Methanobacteriaceae (family), and Methanobrevibacter (genus) in elderly yaks was significantly higher than in adult yaks. In contrast, the abundance of Ther-mogymnomonas in elderly yaks was 34% lower than in adult yaks, though the difference was not statistically significant. The difference in abundance of other archaea was not significant between the two groups. These results suggested that the structure of archaea in the rumen of yaks changed with age. This is the first study to compare the phytogenetic differences of rumen archaeal structure and composition using the yak model.
基金supported by the National Key Technology R&D Program of China(2015BAD03B02–2)Beijing Natural Science Foundation(6174047)+1 种基金earmarked fund for Modern Agro-industry Technology Research System(CARS-35)Agricultural Science and Technology Innovation Program(ASTIP-IAS02)
文摘Background: RNA editing is a co/posttranscriptional modification mechanism that increases the diversity of transcripts, with potential functional consequences. The advent of next-generation sequencing technologies has enabled the identification of RNA edits at unprecedented throughput and resolution. However, our knowledge of RNA editing in swine is still limited.Results: Here, we utilized RES-Scanner to identify RNA editing sites in the brain, subcutaneous fat, heart, liver,muscle, lung and ovary in three 180-day-old Large White gilts based on matched strand-specific RNA sequencing and whole-genome resequencing datasets. In total, we identified 74863 editing sites, and 92.1% of these sites caused adenosine-to-guanosine(A-to-G) conversion. Most A-to-G sites were located in noncoding regions and generally had low editing levels. In total, 151 A-to-G sites were detected in coding regions(CDS), including 94 sites that could lead to nonsynonymous amino acid changes. We provide further evidence supporting a previous observation that pig transcriptomes are highly editable at PRE-1 elements. The number of A-to-G editing sites ranged from 4155(muscle) to 25001(brain) across the seven tissues. The expression levels of the ADAR enzymes could explain some but not all of this variation across tissues. The functional analysis of the genes with tissuespecific editing sites in each tissue revealed that RNA editing might play important roles in tissue function.Specifically, more pathways showed significant enrichment in the fat and liver than in other tissues, while no pathway was enriched in the muscle.Conclusions: This study identified a total of 74863 nonredundant RNA editing sites in seven tissues and revealed the potential importance of RNA editing in tissue function. Our findings largely extend the porcine editome and enhance our understanding of RNA editing in swine.
基金Supported by the National Natural Science Foundation of China(Nos.41576123,41706129)the Guangdong Natural Science Foundation(Nos.2015A030313326,2016A030312004)+2 种基金the International Science and Technology Cooperation Project(No.GASI-IPOVI-04)the Project of Enhancing School with Innovation of Guangdong Ocean University(No.GDOU2016050243)the Program for Scientific Research Start-Up Funds of Guangdong Ocean University(No.E15030)
文摘Huguangyan Maar Lake is a typical maar lake in the southeast of China. It is well preserved and not disturbed by anthropogenic activities. In this study, microbial community structures in sediment and water samples from Huguangyan Maar Lake were investigated using a high-throughput sequencing method. We found significant differences between the microbial community compositions of the water and the sediment. The sediment samples contained more diverse Bacteria and Archaea than did the water samples. Actinobacteria, Betaproteobacteria, Cyanobacteria, and Deltaproteobacteria predominated in the water samples while Deltaproteobacteria, Anaerolineae, Nitrospira, and Dehalococcoidia were the major bacterial groups in the sediment. As for Archaea, Woesearchaeota (DHVEG-6), unclassified Archaea, and Deep Sea Euryarchaeotic Group were detected at higher abundances in the water, whereas the Miscellaneous Crenarchaeotic Group, Thermoplasmata, and Methanomicrobia were significantly more abundant in the sediment. Interactions between Bacteria and Archaea were common in both the water column and the sediment. The concentrations of major nutrients (NO^3-, PO4^3-, SiO3^2- and NH4^+) shaped the microbial population structures in the water. At the higher phylogenetic levels including phylum and class, many of the dominant groups were those that were also abundant in other lakes;however, novel microbial populations (unclassified) were often seen at the lower phylogenetic levels. Our study lays a foundation for examining microbial biogeochemical cycling in sequestered lakes or reservoirs.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD,2014-37)
文摘Differentially expressed genes are thought to regulate the development and progression of oral squamous cell carcinomas (OSCC). The purpose of this study was to screen differentially expressed mRNAs in OSCC and matched paraneoplastic normal tissues, and to explore the intrinsic mechanism of OSCC development and progres- sion. We obtained the differentially expressed mRNA expression profiles in 10 pairs of fresh-frozen OSCC tissue specimens and matched paraneoplastic normal tissue specimens by high-throughput RNA sequencing. By using Gene Ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, the functional significance of the differentially expressed genes were analyzed. We identified 1,120 sig- nificantly up-regulated mRNAs and 178 significantly down-regulated mRNAs in OSCC, compared to normal tissue. The differentially expressed mRNAs were involved in 20 biological processes and 68 signal pathways. Compared to adjacent normal tissue, the expression of MAGEAll was up-regulated; TCHH was down-regulated. These find- ings were verified by real-time PCR. These differentially expressed mRNAs may function as oncogenes or tumor suppressors in the development and progression of OSCC. This study provides novel insights into OSCC. However, further work is needed to determine if these differentially expressed mRNAs have potential roles as diagnostic bio- markers and candidate therapeutic targets for OSCC.
基金financial support from Zhangzidao Group Company Limited for the project (No. 99801214)
文摘We used Illumina high-throughput sequencing of PCR-amplified V3-V4 16 S rRNA gene regions to characterize bacterial communities associated with the adductor muscles, gills, gonads and intestines of the Yesso scallop(Patinopecten yessoensis) from waters around Zhangzidao, Dalian, China. Overall, 421,276 optimized reads were classified as 25 described bacterial phyla and 308 genera. Firmicutes, Proteobacteria, Tenericutes, Bacteroidetes, Chlamydiae and Spirochaetae accounted for > 97% of the total reads in the four organs. The bacterial 16 S rDNA sequences assigned to Firmicutes and Proteobacteria were abundant in the adductor muscles, gills and gonads; while reads from Tenericutes were dominant in the intestines, followed by those from Firmicutes, Chlamydiae, Proteobacteria and Bacteroidetes. At the genus level, the dominant genera in the adductor muscles, gills and gonads appeared to be Bacillus, Enterococcus and Lactococcus, whereas Mycoplasma was dominant in the intestines. The relative abundances of Bacillus, Enterococcus, Lactococcus, Alkaliphilus, Raoultella, Paenibacillus and Oceanobacillus were significantly lower in the intestine than in the other three organs. Cluster analysis and principal coordinates analysis of the operational taxonomy units profile revealed significant differences in the bacterial community structure between the intestine and the other three organs. Taken together, these results suggest that scallops have intestine-specific bacterial communities and the adductor muscles, gills and gonads harbor similar communities. The difference in the bacterial community between organs may relate to unique habitats, surroundings, diet and their respective physiological functions.
基金supported by Project of Science and Technology Development in Wuqing District,Tianjin (No.WQKJ201614)Tianjin 131 innovative talent training project,Postdoctoral Science Foundation
文摘Airborne particulate matter(PM),especially PM2.5,can be easily adsorbed by human respiratory system.Their roles in carrying pathogens for spreading epidemic diseases has attracted great concern.Herein,we developed a novel gelatin filter-based and culture-independent method for investigation of the microbial diversity in PM samples during a haze episode in Tianjin,China.This method involves particle capture by gelatin filters,filter dissolution for DNA extraction,and high-throughput sequencing for analysis of the microbial diversity.A total of 584 operational taxonomic units(OTUs)of bacteria and 370 OTUs of fungi at the genus level were identified during hazy days.The results showed that both bacterial and fungal diversities could be evaluated by this method.This study provides a convenient strategy for investigation of microbial biodiversity in haze,facilitating accurate evaluation of airborne epidemic diseases.
基金supported by the National Natural Science Foundation of China,No.81501018 and 816712276the Natural Science Foundation of Shandong Province of China,No.ZR2013CQ031 and ZR2014HL040
文摘miRNAs regulate a variety of biological processes through pairing-based regulation of gene expression at the 3' end of the noncoding region of the target miRNA, miRNAs were found to be abnormally expressed in ischemia/reperfusion injury models. High-throughput sequencing is a recently developed method for sequencing miRNAs and has been widely used in the analysis of miRNAs. In this study, ischemia/reperfusion injury models were intracerebroventricularly injected with 50 pg/kg apelin-13. High-throughput sequencing showed that 357 known miRNAs were differentially expressed among rat models, among which 78 changed to 〉 2-fold or 〈 0.5-fold. Quantita- tive real-time polymerase chain reaction was selected to confirm the expression levels of four miRNAs that were differentially expressed, the results of which were consistent with the results of high-throughput sequencing. Gene Ontology analysis revealed that the predicted targets of the different miRNAs are particularly associated with cellular process, metabolic process, single-organism process, cell, and binding. Kyoto Encyclopedia of Gene and Genome analysis showed that the target genes are involved in metabolic pathways, mitogen-ac- tivated protein kinase signaling pathway, calcium signaling pathway, and nuclear factor-KB signaling pathway. Our findings suggest that differentially expressed miRNAs and their target genes play an important role in ischemia/reperfusion injury and neuroprotection by apelin-13.
基金supported in part by grants from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB15010103)the National Natural Science Foundation of China (41201247)
文摘supported in part by grants from the Strategic Priority Research Program of Chinese Academy of Sciences (XDB15010103);the National Natural Science Foundation of China (41201247)
文摘The lifetime of G. biloba is very long, and its growth is relatively slow. However, little is known about growth-related genes in this species. We combined mRNA sequencing (RNA-Seq) with bulked segregant analysis (BSA) to fine map significant agronomic trait genes by developing polymorphism molecular markers at the transcriptome level. In this study, transcriptome sequencing of high growth (GD) and low growth (BD) samples of G. biloba half-sib families was performed. After assembling the clean reads, 601 differential expression genes were detected and 513 of them were assigned functional annotations. Single nucleotide polymorphism (SNP) analysis identified SNPs associated with 119 genes in the GD and BD groups;58 of these genes were annotated. Two Homeobox-leucine zipper protein genes were up-regulated in the GD group compared with the BD group;therefore, these are very likely related to high growth of G. biloba. This study provides molecular level data that could be used for seed selection of high growth G. biloba half-sib families for future breeding programs.