期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进的U-Net视网膜图像的神经纤维层分割算法
1
作者 杨茜 徐婕 +1 位作者 黄卉 张欣 《数学的实践与认识》 2021年第12期102-110,共9页
视网膜图像中的神经纤维层(Retinal Nerve Fiber Layer,RNFL)作为视网膜病变的最主要最早期的特征性部位,RNFL的分割对于糖尿病视网膜病变的评估具有重要的意义.由于视网膜图像中视网膜纤维层部分的对比度相对于背景较低,边缘不明显,分... 视网膜图像中的神经纤维层(Retinal Nerve Fiber Layer,RNFL)作为视网膜病变的最主要最早期的特征性部位,RNFL的分割对于糖尿病视网膜病变的评估具有重要的意义.由于视网膜图像中视网膜纤维层部分的对比度相对于背景较低,边缘不明显,分割的图像中存在断裂和难以识别的情况.提出了一种基于U-Net的RNFL分割方法,将Res path、子像素卷积层(Sub-pixel Convolution)和残差模块与原始的U-Net结合,能够更好地保留边缘信息,更加准确地分割RNFL,减少分割中断裂的情况.将提出的算法与原始的U-Net和MultiResUNet进行了比较,选取Jaccard、F1、Precision和Recall四个指标作为评价指标,结果表明本文提出的算法具有更好的分割结果,优于其他两种分割算法. 展开更多
关键词 rnfl分割 Res path 子像素卷积 残差 视网膜图像
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部