期刊文献+
共找到652篇文章
< 1 2 33 >
每页显示 20 50 100
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
1
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting recurrent neural network(rnn)
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
2
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection recurrent neural Network(rnn) Whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
基于RF-RNN模型的DNS隐蔽信道检测方法
3
作者 冯燕茹 《信息与电脑》 2024年第3期158-160,共3页
为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类... 为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类,通过深度学习方法挖掘更高阶的特征表示。实验结果表明,与单一模型相比,该方法在检测准确性和健壮性方面均取得了显著提升。 展开更多
关键词 域名系统(DNS) 随机森林(RF) 循环神经网络(rnn)
下载PDF
Hyperparameter Tuning for Deep Neural Networks Based Optimization Algorithm 被引量:3
4
作者 D.Vidyabharathi V.Mohanraj 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期2559-2573,共15页
For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over ti... For training the present Neural Network(NN)models,the standard technique is to utilize decaying Learning Rates(LR).While the majority of these techniques commence with a large LR,they will decay multiple times over time.Decaying has been proved to enhance generalization as well as optimization.Other parameters,such as the network’s size,the number of hidden layers,drop-outs to avoid overfitting,batch size,and so on,are solely based on heuristics.This work has proposed Adaptive Teaching Learning Based(ATLB)Heuristic to identify the optimal hyperparameters for diverse networks.Here we consider three architec-tures Recurrent Neural Networks(RNN),Long Short Term Memory(LSTM),Bidirectional Long Short Term Memory(BiLSTM)of Deep Neural Networks for classification.The evaluation of the proposed ATLB is done through the various learning rate schedulers Cyclical Learning Rate(CLR),Hyperbolic Tangent Decay(HTD),and Toggle between Hyperbolic Tangent Decay and Triangular mode with Restarts(T-HTR)techniques.Experimental results have shown the performance improvement on the 20Newsgroup,Reuters Newswire and IMDB dataset. 展开更多
关键词 Deep learning deep neural network(DNN) learning rates(LR) recurrent neural network(rnn) cyclical learning rate(CLR) hyperbolic tangent decay(HTD) toggle between hyperbolic tangent decay and triangular mode with restarts(T-HTR) teaching learning based optimization(TLBO)
下载PDF
Remaining Useful Life Prediction for a Roller in a Hot Strip Mill Based on Deep Recurrent Neural Networks 被引量:10
5
作者 Ruihua Jiao Kaixiang Peng Jie Dong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第7期1345-1354,共10页
Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productiv... Accurate estimation of the remaining useful life(RUL)and health state for rollers is of great significance to hot rolling production.It can provide decision support for roller management so as to improve the productivity of the hot rolling process.In addition,the RUL prediction for rollers is helpful in transitioning from the current regular maintenance strategy to conditional-based maintenance.Therefore,a new method that can extract coarse-grained and fine-grained features from batch data to predict the RUL of the rollers is proposed in this paper.Firstly,a new deep learning network architecture based on recurrent neural networks that can make full use of the extracted coarsegrained fine-grained features to estimate the heath indicator(HI)is developed,where the HI is able to indicate the health state of the roller.Following that,a state-space model is constructed to describe the HI,and the probabilistic distribution of RUL can be estimated by extrapolating the HI degradation model to a predefined failure threshold.Finally,application to a hot strip mill is given to verify the effectiveness of the proposed methods using data collected from an industrial site,and the relatively low RMSE and MAE values demonstrate its advantages compared with some other popular deep learning methods. 展开更多
关键词 Hot strip mill prognostics and health management(PHM) recurrent neural network(rnn) remaining useful life(RUL) roller management.
下载PDF
A Multilayer Recurrent Fuzzy Neural Network for Accurate Dynamic System Modeling 被引量:5
6
作者 柳贺 黄道 《Journal of Donghua University(English Edition)》 EI CAS 2008年第4期373-378,共6页
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ... A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy. 展开更多
关键词 recurrent neural networks T-S fuzzy model chaotic search least square estimation modelING
下载PDF
New Stability Criteria for Recurrent Neural Networks with a Time-varying Delay 被引量:2
7
作者 Hong-Bing Zeng Shen-Ping Xiao Bin Liu 《International Journal of Automation and computing》 EI 2011年第1期128-133,共6页
This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore... This paper deals with the stability of static recurrent neural networks (RNNs) with a time-varying delay. An augmented Lyapunov-Krasovskii functional is employed, in which some useful terms are included. Furthermore, the relationship among the timevarying delay, its upper bound and their difierence, is taken into account, and novel bounding techniques for 1- τ(t) are employed. As a result, without ignoring any useful term in the derivative of the Lyapunov-Krasovskii functional, the resulting delay-dependent criteria show less conservative than the existing ones. Finally, a numerical example is given to demonstrate the effectiveness of the proposed methods. 展开更多
关键词 STABILITY recurrent neural networks rnns) time-varying delay DELAY-DEPENDENT augmented Lyapunov-Krasovskii functional.
下载PDF
Vulnerability Detection of Ethereum Smart Contract Based on SolBERT-BiGRU-Attention Hybrid Neural Model
8
作者 Guangxia Xu Lei Liu Jingnan Dong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期903-922,共20页
In recent years,with the great success of pre-trained language models,the pre-trained BERT model has been gradually applied to the field of source code understanding.However,the time cost of training a language model ... In recent years,with the great success of pre-trained language models,the pre-trained BERT model has been gradually applied to the field of source code understanding.However,the time cost of training a language model from zero is very high,and how to transfer the pre-trained language model to the field of smart contract vulnerability detection is a hot research direction at present.In this paper,we propose a hybrid model to detect common vulnerabilities in smart contracts based on a lightweight pre-trained languagemodel BERT and connected to a bidirectional gate recurrent unitmodel.The downstream neural network adopts the bidirectional gate recurrent unit neural network model with a hierarchical attention mechanism to mine more semantic features contained in the source code of smart contracts by using their characteristics.Our experiments show that our proposed hybrid neural network model SolBERT-BiGRU-Attention is fitted by a large number of data samples with smart contract vulnerabilities,and it is found that compared with the existing methods,the accuracy of our model can reach 93.85%,and the Micro-F1 Score is 94.02%. 展开更多
关键词 Smart contract pre-trained language model deep learning recurrent neural network blockchain security
下载PDF
Robust stability analysis of Takagi-Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays 被引量:1
9
作者 M.Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期1-15,共15页
In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stabili... In this paper, the global stability of Takagi-Sugeno (TS) uncertain stochastic fuzzy recurrent neural networks with discrete and distributed time-varying delays (TSUSFRNNs) is considered. A novel LMI-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of TSUSFRNNs. The proposed stability conditions are demonstrated through numerical examples. Furthermore, the supplementary requirement that the time derivative of time-varying delays must be smaller than one is removed. Comparison results are demonstrated to show that the proposed method is more able to guarantee the widest stability region than the other methods available in the existing literature. 展开更多
关键词 recurrent neural networks linear matrix inequality Lyapunov stability time-varyingdelays TS fuzzy model
下载PDF
Robust exponential stability analysis of a larger class of discrete-time recurrent neural networks 被引量:1
10
作者 ZHANG Jian-hai ZHANG Sen-lin LIU Mei-qin 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第12期1912-1920,共9页
The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced t... The robust exponential stability of a larger class of discrete-time recurrent neural networks (RNNs) is explored in this paper. A novel neural network model, named standard neural network model (SNNM), is introduced to provide a general framework for stability analysis of RNNs. Most of the existing RNNs can be transformed into SNNMs to be analyzed in a unified way. Applying Lyapunov stability theory method and S-Procedure technique, two useful criteria of robust exponential stability for the discrete-time SNNMs are derived. The conditions presented are formulated as linear matrix inequalities (LMIs) to be easily solved using existing efficient convex optimization techniques. An example is presented to demonstrate the transformation procedure and the effectiveness of the results. 展开更多
关键词 Standard neural network model (SNNM) Robust exponential stability recurrent neural networks rnns) DISCRETE-TIME Time-delay system Linear matrix inequality (LMI)
下载PDF
Long Short-Term Memory Recurrent Neural Network-Based Acoustic Model Using Connectionist Temporal Classification on a Large-Scale Training Corpus 被引量:9
11
作者 Donghyun Lee Minkyu Lim +4 位作者 Hosung Park Yoseb Kang Jeong-Sik Park Gil-Jin Jang Ji-Hwan Kim 《China Communications》 SCIE CSCD 2017年第9期23-31,共9页
A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a force... A Long Short-Term Memory(LSTM) Recurrent Neural Network(RNN) has driven tremendous improvements on an acoustic model based on Gaussian Mixture Model(GMM). However, these models based on a hybrid method require a forced aligned Hidden Markov Model(HMM) state sequence obtained from the GMM-based acoustic model. Therefore, it requires a long computation time for training both the GMM-based acoustic model and a deep learning-based acoustic model. In order to solve this problem, an acoustic model using CTC algorithm is proposed. CTC algorithm does not require the GMM-based acoustic model because it does not use the forced aligned HMM state sequence. However, previous works on a LSTM RNN-based acoustic model using CTC used a small-scale training corpus. In this paper, the LSTM RNN-based acoustic model using CTC is trained on a large-scale training corpus and its performance is evaluated. The implemented acoustic model has a performance of 6.18% and 15.01% in terms of Word Error Rate(WER) for clean speech and noisy speech, respectively. This is similar to a performance of the acoustic model based on the hybrid method. 展开更多
关键词 acoustic model connectionisttemporal classification LARGE-SCALE trainingcorpus LONG SHORT-TERM memory recurrentneural network
下载PDF
基于GRU-RNN组合模型的云计算RLF仿真
12
作者 胡应钢 宋泽瑞 姜静清 《计算机仿真》 2024年第10期513-516,共4页
随着云计算的兴起和信息技术的快速发展,云计算数据中心存在能源消耗过高的问题,服务器的能源消耗主要是由CPU和内存等资源消耗过高引起的,这些资源利用率的不平衡是导致资源浪费和能源消耗的关键因素之一。对数据中心资源使用量进行预... 随着云计算的兴起和信息技术的快速发展,云计算数据中心存在能源消耗过高的问题,服务器的能源消耗主要是由CPU和内存等资源消耗过高引起的,这些资源利用率的不平衡是导致资源浪费和能源消耗的关键因素之一。对数据中心资源使用量进行预测,有助于进行资源管理,提高服务器资源利用率,从而缓解资源浪费和能耗过高的问题。本文建立一种基于门控循环单元与循环神经网络的组合预测模型GRU-RNN对负载进行预测。实验结果表明,提出的GRU-RNN模型相比于以往简单预测模型RNN、LSTM、GRU和现有的复合预测模型ARIMA-LSTM、GRU-LSTM等,有更高的预测精度。 展开更多
关键词 门控循环单元 循环神经网络 负载预测 资源预测模型
下载PDF
Global stability of interval recurrent neural networks 被引量:1
13
作者 袁铸钢 刘志远 +1 位作者 裴润 申涛 《Journal of Beijing Institute of Technology》 EI CAS 2012年第3期382-386,共5页
The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robus... The robust global exponential stability of a class of interval recurrent neural networks(RNNs) is studied,and a new robust stability criterion is obtained in the form of linear matrix inequality.The problem of robust stability of interval RNNs is transformed into a problem of solving a class of linear matrix inequalities.Thus,the robust stability of interval RNNs can be analyzed by directly using the linear matrix inequalities(LMI) toolbox of MATLAB.Numerical example is given to show the effectiveness of the obtained results. 展开更多
关键词 recurrent neural networksrnns) interval systems linear matrix inequalities(LMI) global exponential stability
下载PDF
RECURRENT NEURAL NETWORK MODEL BASED ON PROJECTIVE OPERATOR AND ITS APPLICATION TO OPTIMIZATION PROBLEMS
14
作者 马儒宁 陈天平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第4期543-554,共12页
The recurrent neural network (RNN) model based on projective operator was studied. Different from the former study, the value region of projective operator in the neural network in this paper is a general closed con... The recurrent neural network (RNN) model based on projective operator was studied. Different from the former study, the value region of projective operator in the neural network in this paper is a general closed convex subset of n-dimensional Euclidean space and it is not a compact convex set in general, that is, the value region of projective operator is probably unbounded. It was proved that the network has a global solution and its solution trajectory converges to some equilibrium set whenever objective function satisfies some conditions. After that, the model was applied to continuously differentiable optimization and nonlinear or implicit complementarity problems. In addition, simulation experiments confirm the efficiency of the RNN. 展开更多
关键词 recurrent neural network model projective operator global convergence OPTIMIZATION complementarity problems
下载PDF
A REALISTIC MODEL OF NEURAL NETWORKS
15
作者 顾凡及 李训经 阮炯 《Journal of Electronics(China)》 1992年第4期289-295,共7页
A realistic model of neural networks was proposed in this paper.The dynamicprocess of neural impulse discharging was considered.The equations of the model correspondto postsynaptic potentials,receptor potentials,initi... A realistic model of neural networks was proposed in this paper.The dynamicprocess of neural impulse discharging was considered.The equations of the model correspondto postsynaptic potentials,receptor potentials,initial segment graded potentials and the impulsetrain along the axon respectively.To solve the equations numerically,a recurrent algorithm and itscorresponding flow chart was also developed.The simulation results can imitate adaptation,post-excitation inhibition,and phase locking of sensory receptors;they can also imitate the transientresponses of lateral inhibitory network and Mach band phenomenon when they trended to besteady.The simulation results also showed that the lateral inhibitory network was sensitive tomoving objects. 展开更多
关键词 neural network REALISTIC model recurrent algorithm Simulation Dynamic PROPERTY
下载PDF
基于RNN的水厂过滤过程研究
16
作者 张维玺 洪雷 《现代信息科技》 2024年第14期140-144,共5页
当下饮用水标准不断提高,传统水质预测方法存在明显不足。对使用循环神经网络(RNN)处理时间序列数据进行了研究。主要针对全年数据、夏季数据、冬季数据进行分析,结果显示全年数据最优模型MSE和MAE为0.0047、0.0541;冬季数据最优模型MSE... 当下饮用水标准不断提高,传统水质预测方法存在明显不足。对使用循环神经网络(RNN)处理时间序列数据进行了研究。主要针对全年数据、夏季数据、冬季数据进行分析,结果显示全年数据最优模型MSE和MAE为0.0047、0.0541;冬季数据最优模型MSE和MAE为0.0051、0.0544;夏季数据的模拟效果相对较差,其最低MSE和MAE值为0.2859、0.4704。说明RNN在对大量的水质数据进行预测时,其模拟有效且拟合精度很高,但对数据量少、数据情况复杂的模型模拟时,其拟合效果并不是很好。 展开更多
关键词 过滤水质预测 循环神经网络 时间序列 最优模型
下载PDF
Nonlinear model predictive control based on hyper chaotic diagonal recurrent neural network
17
作者 Samira Johari Mahdi Yaghoobi Hamid RKobravi 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第1期197-208,共12页
Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was... Nonlinear model predictive controllers(NMPC)can predict the future behavior of the under-controlled system using a nonlinear predictive model.Here,an array of hyper chaotic diagonal recurrent neural network(HCDRNN)was proposed for modeling and predicting the behavior of the under-controller nonlinear system in a moving forward window.In order to improve the convergence of the parameters of the HCDRNN to improve system’s modeling,the extent of chaos is adjusted using a logistic map in the hidden layer.A novel NMPC based on the HCDRNN array(HCDRNN-NMPC)was proposed that the control signal with the help of an improved gradient descent method was obtained.The controller was used to control a continuous stirred tank reactor(CSTR)with hard-nonlinearities and input constraints,in the presence of uncertainties including external disturbance.The results of the simulations show the superior performance of the proposed method in trajectory tracking and disturbance rejection.Parameter convergence and neglectable prediction error of the neural network(NN),guaranteed stability and high tracking performance are the most significant advantages of the proposed scheme. 展开更多
关键词 nonlinear model predictive control diagonal recurrent neural network chaos theory continuous stirred tank reactor
下载PDF
基于ARIMA-RNN混合模型的股价预测
18
作者 管学英 《哈尔滨商业大学学报(自然科学版)》 CAS 2024年第2期250-256,共7页
提升时间序列模型的预测精度需要全面了解其数据的线性和非线性复合特征,利用ARIMA以及RNN模型分别对时间序列进行建模,挖掘其线性以及非线性规律,最后得到两种模型的综合预估结果.选取沪深300指数(000300)2006年1月4日~2021年11月26日... 提升时间序列模型的预测精度需要全面了解其数据的线性和非线性复合特征,利用ARIMA以及RNN模型分别对时间序列进行建模,挖掘其线性以及非线性规律,最后得到两种模型的综合预估结果.选取沪深300指数(000300)2006年1月4日~2021年11月26日中所有交易日的K线数据为样本,分析结果说明,ARIMA-RNN混合模型的精度比单一循环神经网络模型的预测精度要高,混合模型对于短期动态与静态预测成效较高,有利于投资者和企业做出更加科学可行的决策. 展开更多
关键词 股票价格 组合模型 ARIMA模型 循环神经网络 深度学习
下载PDF
Multi-GPU Based Recurrent Neural Network Language Model Training
19
作者 Xiaoci Zhang Naijie Gu Hong Ye 《国际计算机前沿大会会议论文集》 2016年第1期124-126,共3页
Recurrent neural network language models (RNNLMs) have been applied in a wide range of research fields, including nature language processing and speech recognition. One challenge in training RNNLMs is the heavy comput... Recurrent neural network language models (RNNLMs) have been applied in a wide range of research fields, including nature language processing and speech recognition. One challenge in training RNNLMs is the heavy computational cost of the crucial back-propagation (BP) algorithm. This paper presents an effective approach to train recurrent neural network on multiple GPUs, where parallelized stochastic gradient descent (SGD) is applied. Results on text-based experiments show that the proposed approach achieves 3.4× speedup on 4 GPUs than the single one, without any performance loss in language model perplexity. 展开更多
关键词 recurrent neural network LANGUAGE modelS (rnnLMs)
下载PDF
An INS/GNSS integrated navigation in GNSS denied environment using recurrent neural network 被引量:10
20
作者 Hai-fa Dai Hong-wei Bian +1 位作者 Rong-ying Wang Heng Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第2期334-340,共7页
In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the mem... In view of the failure of GNSS signals,this paper proposes an INS/GNSS integrated navigation method based on the recurrent neural network(RNN).This proposed method utilizes the calculation principle of INS and the memory function of the RNN to estimate the errors of the INS,thereby obtaining a continuous,reliable and high-precision navigation solution.The performance of the proposed method is firstly demonstrated using an INS/GNSS simulation environment.Subsequently,an experimental test on boat is also conducted to validate the performance of the method.The results show a promising application prospect for RNN in the field of positioning for INS/GNSS integrated navigation in the absence of GNSS signal,as it outperforms extreme learning machine(ELM)and EKF by approximately 30%and 60%,respectively. 展开更多
关键词 INERTIAL NAVIGATION system(INS) Global NAVIGATION satellite system(GNSS) Integrated NAVIGATION recurrent neural network(rnn)
下载PDF
上一页 1 2 33 下一页 到第
使用帮助 返回顶部