期刊文献+
共找到773篇文章
< 1 2 39 >
每页显示 20 50 100
耦合Encoder-Decoder与RFR的径流预报模型研究
1
作者 张健 《水利科学与寒区工程》 2024年第7期80-82,共3页
针对传统径流预报模型存在可靠性不高的缺陷,提出耦合Encoder-Decoder与RFR的径流预报模型,即通过Encoder-Decoder架构深度学习模块对径流-气象资料进行编码、解码处理以提取得到新的语义特征,进而将其作为输入变量用以随机森林回归(RFR... 针对传统径流预报模型存在可靠性不高的缺陷,提出耦合Encoder-Decoder与RFR的径流预报模型,即通过Encoder-Decoder架构深度学习模块对径流-气象资料进行编码、解码处理以提取得到新的语义特征,进而将其作为输入变量用以随机森林回归(RFR)拟合。在阜阳市径流量预报实证中表明,Encoder-Decoder与RFR模型的R2=0.75,MAE、RMSE分别为3.75、4.26亿m3;较之于RFR模型的R2提升了12.67%,而MAE和RMSE依次减小了17.40%、16.63%。 展开更多
关键词 encoder-decoder架构 RFR模型 径流量预报
下载PDF
基于encoder-decoder框架的城镇污水厂出水水质预测 被引量:1
2
作者 史红伟 陈祺 +1 位作者 王云龙 李鹏程 《中国农村水利水电》 北大核心 2023年第11期93-99,共7页
由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encod... 由于污水厂的出水水质指标繁多、污水处理过程中反应复杂、时序非线性程度高,基于机理模型的预测方法无法取得理想效果。针对此问题,提出基于深度学习的污水厂出水水质预测方法,并以吉林省某污水厂监测水质为来源数据,利用多种结合encoder-decoder结构的神经网络预测水质。结果显示,所提结构对LSTM和GRU网络预测能力都有一定提升,对长期预测能力提升更加显著,ED-GRU模型效果最佳,短期预测中的4个出水水质指标均方根误差(RMSE)为0.7551、0.2197、0.0734、0.3146,拟合优度(R2)为0.9013、0.9332、0.9167、0.9532,可以预测出水质局部变化,而长期预测中的4个指标RMSE为1.7204、1.7689、0.4478、0.8316,R2为0.4849、0.5507、0.4502、0.7595,可以预测出水质变化趋势,与顺序结构相比,短期预测RMSE降低10%以上,R2增加2%以上,长期预测RMSE降低25%以上,R2增加15%以上。研究结果表明,基于encoder-decoder结构的神经网络可以对污水厂出水水质进行准确预测,为污水处理工艺改进提供技术支撑。 展开更多
关键词 污水厂出水 encoder-decoder 多指标水质预测 GRU模型
下载PDF
基于时空特征融合的Encoder-Decoder多步4D短期航迹预测
3
作者 石庆研 张泽中 韩萍 《信号处理》 CSCD 北大核心 2023年第11期2037-2048,共12页
航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变... 航迹预测在确保空中交通安全、高效运行中扮演着至关重要的角色。所预测的航迹信息是航迹优化、冲突告警等决策工具的输入,而预测准确性取决于模型对航迹序列特征的提取能力。航迹序列数据是具有丰富时空特征的多维时间序列,其中每个变量都呈现出长短期的时间变化模式,并且这些变量之间还存在着相互依赖的空间信息。为了充分提取这种时空特征,本文提出了基于融合时空特征的编码器-解码器(Spatio-Temporal EncoderDecoder,STED)航迹预测模型。在Encoder中使用门控循环单元(Gated Recurrent Unit,GRU)、卷积神经网络(Convolutional Neural Network,CNN)和注意力机制(Attention,AT)构成的双通道网络来分别提取航迹时空特征,Decoder对时空特征进行拼接融合,并利用GRU对融合特征进行学习和递归输出,实现对未来多步航迹信息的预测。利用真实的航迹数据对算法性能进行验证,实验结果表明,所提STED网络模型能够在未来10 min预测范围内进行高精度的短期航迹预测,相比于LSTM、CNN-LSTM和AT-LSTM等数据驱动航迹预测模型具有更高的精度。此外,STED网络模型预测一个航迹点平均耗时为0.002 s,具有良好的实时性。 展开更多
关键词 4D航迹预测 时空特征 encoder-decoder 门控循环单元
下载PDF
利用Encoder-Decoder框架的深度学习网络实现绕射波分离及成像 被引量:2
4
作者 马铭 包乾宗 《石油地球物理勘探》 EI CSCD 北大核心 2023年第1期56-64,共9页
利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的... 利用单纯绕射波场实现地下地质异常体的识别具有坚实的理论基础,对应的实施方法得到了广泛研究,且有效地应用于实际勘探。但现有技术在微小尺度异常体成像方面收效甚微,相关研究多数以射线传播理论为基础,对于影响绕射波分离成像精度的因素分析并不完备。相较于反射波,由于存在不连续构造而产生的绕射波能量微弱并且相互干涉,同时环境干扰使得绕射波进一步湮没。因此,更高精度的波场分离及单独成像是现阶段基于绕射波超高分辨率处理、解释的重点研究方向。为此,首先针对地球物理勘探中地质异常体的准确定位,以携带高分辨率信息的绕射波为研究对象,系统分析在不同尺度、不同物性参数的异常体情况下绕射波的能量大小及形态特征,掌握绕射波与其他类型波叠加的具体形式;然后根据相应特征性质提出基于深度学习技术的绕射波分离成像方法,即利用Encoder-Decoder框架的空洞卷积网络捕获绕射波场特征,从而实现绕射波分离,基于速度连续性原则构建单纯绕射波场的偏移速度模型并完成最终成像。数据测试表明,该方法最终可满足微小地质异常体高精度识别的需求。 展开更多
关键词 绕射波分离成像 深度神经网络 encoder-decoder框架 方差最大范数
下载PDF
基于RF-RNN模型的DNS隐蔽信道检测方法
5
作者 冯燕茹 《信息与电脑》 2024年第3期158-160,共3页
为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类... 为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类,通过深度学习方法挖掘更高阶的特征表示。实验结果表明,与单一模型相比,该方法在检测准确性和健壮性方面均取得了显著提升。 展开更多
关键词 域名系统(DNS) 随机森林(RF) 循环神经网络(rnn)
下载PDF
基于RNN补偿器的欠驱动过程控制方法应用
6
作者 白裕彤 程辉 叶贞成 《控制工程》 CSCD 北大核心 2024年第10期1768-1776,共9页
化工过程中存在一类操作变量维度小于目标被控变量维度的过程。针对该类过程,现行控制方法的控制效果仍有待提高。为实现对上述化工过程的良好控制,类比欠驱动机械系统提出了基于循环神经网络(recurrent neural network,RNN)补偿器的控... 化工过程中存在一类操作变量维度小于目标被控变量维度的过程。针对该类过程,现行控制方法的控制效果仍有待提高。为实现对上述化工过程的良好控制,类比欠驱动机械系统提出了基于循环神经网络(recurrent neural network,RNN)补偿器的控制方法。该方法基于模糊逻辑与信息融合设计主控器,并通过额外串联模糊控制器实现了传统模糊控制器的量化因子与比例因子的自适应整定,又运用RNN设计了补偿控制器,通过以上改进解决了模型与实际过程之间的未建模动态性能与参数不确定性偏差导致的动态性能较差和存在稳态误差的问题。最后,以二级二路压缩过程为例进行了仿真,仿真结果证明了所提控制方法的有效性。 展开更多
关键词 欠驱动系统 模糊理论 动态性能 不确定性 rnn
下载PDF
Underwater Acoustic Signal Noise Reduction Based on a Fully Convolutional Encoder-Decoder Neural Network
7
作者 SONG Yongqiang CHU Qian +2 位作者 LIU Feng WANG Tao SHEN Tongsheng 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1487-1496,共10页
Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological an... Noise reduction analysis of signals is essential for modern underwater acoustic detection systems.The traditional noise reduction techniques gradually lose efficacy because the target signal is masked by biological and natural noise in the marine environ-ment.The feature extraction method combining time-frequency spectrograms and deep learning can effectively achieve the separation of noise and target signals.A fully convolutional encoder-decoder neural network(FCEDN)is proposed to address the issue of noise reduc-tion in underwater acoustic signals.The time-domain waveform map of underwater acoustic signals is converted into a wavelet low-frequency analysis recording spectrogram during the denoising process to preserve as many underwater acoustic signal characteristics as possible.The FCEDN is built to learn the spectrogram mapping between noise and target signals that can be learned at each time level.The transposed convolution transforms are introduced,which can transform the spectrogram features of the signals into listenable audio files.After evaluating the systems on the ShipsEar Dataset,the proposed method can increase SNR and SI-SNR by 10.02 and 9.5dB,re-spectively. 展开更多
关键词 deep learning convolutional encoder-decoder neural network wavelet low-frequency analysis recording spectrogram
下载PDF
并行RNN分组策略研究
8
作者 易也难 卞艺杰 《智能计算机与应用》 2024年第3期133-139,共7页
并行RNN结构或者分组RNN结构可以显著减少模型中的参数总量,从而有效地降低模型的训练成本并提高训练效率。本文提出一种高效的并行RNN分组策略,该策略不需要对输入数据进行拆分和重组操作,并且可以降低梯度反向传播的不稳定性对于模型... 并行RNN结构或者分组RNN结构可以显著减少模型中的参数总量,从而有效地降低模型的训练成本并提高训练效率。本文提出一种高效的并行RNN分组策略,该策略不需要对输入数据进行拆分和重组操作,并且可以降低梯度反向传播的不稳定性对于模型训练造成的负面影响。在语言建模和命名实体识别的任务中的实验结果表明,本文所提出的并行RNN分组策略,模型的参数计算总量大幅度减少,在2个任务中的表现显著提升。 展开更多
关键词 并行rnn 分组策略 语言建模 命名实体识别
下载PDF
基于Encoder-Decoder-ILSTM模型的瓦斯浓度预测研究
9
作者 陈小建 《能源与节能》 2023年第12期102-105,176,共5页
近年来,神经网络在各领域均发挥了巨大作用,同样在煤矿瓦斯浓度预测当中也有应用。为了提高模型的预测精度和实时性,结合Encoder-Decoder结构、长短期记忆形成、蛇优化算法提出了一种新的神经网络,为促进煤矿安全生产提供了技术支持。
关键词 神经网络 encoder-decoder 蛇优化算法 瓦斯浓度预测
下载PDF
RNN循环神经网络的服务机器人交互手势辨识
10
作者 郑奕捷 李翠玉 郑祖芳 《机械设计与制造》 北大核心 2024年第4期282-285,共4页
服务机器人交互过程中机器人重要关节点难以确定,导致交互手势辨识难以增加,因此设计一种基于RNN循环神经网络的服务机器人交互手势辨识方法。利用Kinect捕获服务机器人交互手势深度图像,确定服务机器人交互过程中的重要关节点,提取服... 服务机器人交互过程中机器人重要关节点难以确定,导致交互手势辨识难以增加,因此设计一种基于RNN循环神经网络的服务机器人交互手势辨识方法。利用Kinect捕获服务机器人交互手势深度图像,确定服务机器人交互过程中的重要关节点,提取服务机器人交互手势特征。根据手势特征提取结果,定义手势模板,采用RNN循环神经网络对手势模板进行学习处理,搭建服务机器人交互手势辨识模型,得到相关的交互手势辨识结果。实验测试结果表明,采用所提方法可以快速获取高精度的服务机器人交互手势辨识结果,实际应用效果好。 展开更多
关键词 rnn循环神经网络 服务机器人 交互手势 辨识
下载PDF
Enhancing Skin Cancer Diagnosis with Deep Learning:A Hybrid CNN-RNN Approach
11
作者 Syeda Shamaila Zareen Guangmin Sun +2 位作者 Mahwish Kundi Syed Furqan Qadri Salman Qadri 《Computers, Materials & Continua》 SCIE EI 2024年第4期1497-1519,共23页
Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep lea... Skin cancer diagnosis is difficult due to lesion presentation variability. Conventionalmethods struggle to manuallyextract features and capture lesions spatial and temporal variations. This study introduces a deep learning-basedConvolutional and Recurrent Neural Network (CNN-RNN) model with a ResNet-50 architecture which usedas the feature extractor to enhance skin cancer classification. Leveraging synergistic spatial feature extractionand temporal sequence learning, the model demonstrates robust performance on a dataset of 9000 skin lesionphotos from nine cancer types. Using pre-trained ResNet-50 for spatial data extraction and Long Short-TermMemory (LSTM) for temporal dependencies, the model achieves a high average recognition accuracy, surpassingprevious methods. The comprehensive evaluation, including accuracy, precision, recall, and F1-score, underscoresthe model’s competence in categorizing skin cancer types. This research contributes a sophisticated model andvaluable guidance for deep learning-based diagnostics, also this model excels in overcoming spatial and temporalcomplexities, offering a sophisticated solution for dermatological diagnostics research. 展开更多
关键词 Skin cancer classification deep learning Convolutional Neural Network(CNN) rnn ResNet-50
下载PDF
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
12
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(rnn)
下载PDF
RNN在线学习框架下CNN-LSTM模型对黄金期货价格的预测
13
作者 石岩松 杨博 《现代信息科技》 2024年第11期141-144,152,共5页
黄金是一种特殊的金融商品,具有避险功能。黄金期货价格受多方面因素的影响,一般认为黄金期货价格变化趋势呈现非线性非平稳的时间序列,传统的预测模型难以对其进行有效的预测。文章向传统在线学习算法中加入信息传递,提出基于RNN的在... 黄金是一种特殊的金融商品,具有避险功能。黄金期货价格受多方面因素的影响,一般认为黄金期货价格变化趋势呈现非线性非平稳的时间序列,传统的预测模型难以对其进行有效的预测。文章向传统在线学习算法中加入信息传递,提出基于RNN的在线学习算法ROA(RNN-based Online Algorithm);选用芝加哥商品交易所黄金期货价格数据进行实证分析,使用CNN-LSTM作为基础预测模型,以MAE、RMSE、R^(2)作为评价指标,结果表明在所有评价指标中ROA的预测性能均优于传统在线学习算法。 展开更多
关键词 rnn 黄金期货价格 在线学习算法
下载PDF
基于LSTM-RNN的船舶操纵运动黑箱建模
14
作者 田延飞 李知临 +1 位作者 艾万政 韩喜红 《舰船科学技术》 北大核心 2024年第11期80-84,共5页
当无需揭示船舶操纵运动机理过程,而只需对输入输出建立映射时,黑箱建模成为一种有效途径。本文基于长短期记忆-循环神经网络(Long Short-term Memory-recurrent Neural Network,LSTM-RNN)构建船舶航向-舵角黑箱模型,LSTM网络为10-10-1... 当无需揭示船舶操纵运动机理过程,而只需对输入输出建立映射时,黑箱建模成为一种有效途径。本文基于长短期记忆-循环神经网络(Long Short-term Memory-recurrent Neural Network,LSTM-RNN)构建船舶航向-舵角黑箱模型,LSTM网络为10-10-1结构,误差指标为RMSE,参数学习采用Adam算法。开展实船Z型操纵实验获取了航向-舵角数据。前70%用于模型训练,后30%用于模型测试。训练后的模型使得RMSE达到设计目标。对测试集数据,训练后模型拟合优度在0.98以上,表明其具有良好的有效性和泛化性。文中航向-舵角LSTM-RNN黑箱模型结构简明清晰,参数明确,易于实际操作使用,为航向-舵角关系建模提供了一种可行方法。 展开更多
关键词 船舶操纵运动 黑箱建模 机器学习 LSTM-rnn
下载PDF
基于PyTorch+ARIMA/RNN的时序数据预测方法比较研究
15
作者 邓抒江 《电脑编程技巧与维护》 2024年第4期71-73,共3页
随着深度学习的发展,PyTorch作为一个灵活的深度学习框架,被广泛应用于时序预测任务中。研究阐明了PyTorch框架及其在时序预测任务中的应用优势,介绍了基于PyTorch实现ARIMA和循环神经网络(RNN)两种典型时序预测模型的技术路线,从精度... 随着深度学习的发展,PyTorch作为一个灵活的深度学习框架,被广泛应用于时序预测任务中。研究阐明了PyTorch框架及其在时序预测任务中的应用优势,介绍了基于PyTorch实现ARIMA和循环神经网络(RNN)两种典型时序预测模型的技术路线,从精度、效率方面对两种模型进行比较,给出了各自的应用场景及优化方向,为时序预测任务提供了算法选型和实现参考与建议。 展开更多
关键词 时序预测 PyTorch框架 ARIMA模型 rnn模型
下载PDF
基于改进DBSCAN-RNN的电力负荷建模及可调特征提取 被引量:4
16
作者 张露 颜宏文 马瑞 《智慧电力》 北大核心 2023年第3期39-45,共7页
针对面向能源消纳的电力负荷实时调控需求,以电热水器为例建立调控模型,提出一种改进DBSCANRNN算法的电力负荷可调特征提取与可调潜力挖掘方法。以改进DBSCAN聚类结果作为RNN输入获得一种深度学习新策略,基于改进DBSCAN-RNN进行电器群... 针对面向能源消纳的电力负荷实时调控需求,以电热水器为例建立调控模型,提出一种改进DBSCANRNN算法的电力负荷可调特征提取与可调潜力挖掘方法。以改进DBSCAN聚类结果作为RNN输入获得一种深度学习新策略,基于改进DBSCAN-RNN进行电器群设定温度与天气温度、电器负荷功率的建模,考虑用户电器使用习惯,输出输入量对电器实际功率的影响因子以及电器可调功率与真实功率对应的状态方程参数。某市电热水器群实际数据结果表明所提方法可正确有效地获取海量电热水器群聚合负荷模型及其可调功率。 展开更多
关键词 可调潜力挖掘 改进DBSCAN聚类算法 rnn特征提取 负荷特性建模
下载PDF
一种基于Pred-RNN模型的地震预测方法———以圣安德烈斯断层区域为例
17
作者 王雪娇 陈雨 《电子测试》 2023年第4期86-90,共5页
地震预测具有十分重要的现实意义和社会价值。本文提出一种利用时空预测模型的方法来进行地震预测,基于加利福尼亚圣安德烈斯断层区域的地震数据,采用Pred-RNN模型预测未来地震事件的区域、震级和趋势。实验表明,Pred-RNN模型在MSE、SSI... 地震预测具有十分重要的现实意义和社会价值。本文提出一种利用时空预测模型的方法来进行地震预测,基于加利福尼亚圣安德烈斯断层区域的地震数据,采用Pred-RNN模型预测未来地震事件的区域、震级和趋势。实验表明,Pred-RNN模型在MSE、SSIM等评价指标上都具有很好的表现。分析结果表明,本文提出的方法在强化地震预测方面具有显著潜力,为地震预测研究提供了新思路。 展开更多
关键词 地震预测 Pred-rnn 圣安德烈斯断层 时空预测
下载PDF
基于CNN-RNN集成的隧道事故异常声音识别 被引量:1
18
作者 郎巨林 郑晟 《电子测量技术》 北大核心 2023年第20期164-169,共6页
为提高公路隧道事故异常声音识别的准确率,并针对卷积神经网络只关注局部信息问题,提出了一种基于CNN-RNN集成的声音识别模型。该模型采用Stacking集成策略将CNN的强特征表达能力和RNN的强记忆能力相结合,并使用门控循环单元减少循环神... 为提高公路隧道事故异常声音识别的准确率,并针对卷积神经网络只关注局部信息问题,提出了一种基于CNN-RNN集成的声音识别模型。该模型采用Stacking集成策略将CNN的强特征表达能力和RNN的强记忆能力相结合,并使用门控循环单元减少循环神经网络的计算复杂度,将SIREN正弦周期函数作为RNN的隐式激活函数,增强模型对声音数据的拟合能力,设计多通道卷积细化特征提取的精度,实现全局化特征提取。在异常声音数据集上评估了所提声音识别模型的识别性能,实验结果表明:提出的声音模型的识别性能高于其他模型,且更加稳健,可有效识别公路隧道事故的异常声音。 展开更多
关键词 集成学习 STACKING CNN rnn 声音识别
下载PDF
基于时空记忆解耦RNN的雷暴预测方法 被引量:3
19
作者 何诗扬 汪玲 +1 位作者 朱岱寅 钱君 《系统工程与电子技术》 EI CSCD 北大核心 2023年第11期3474-3480,共7页
使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆... 使用循环神经网络进行雷暴的外推预测,利用气象雷达历史反射率因子资料给出未来一小时的雷暴预测结果。网络的核心是时空长短时记忆(spatiotemporal long short-term memory,ST-LSTM)单元,加入了记忆解耦结构以分离时间记忆和空间记忆状态。在中国香港天文台(Hong Kong Observatorg,HKO)的HKO-7数据集的基础上筛选雷暴数据,构建训练及测试数据集。将有记忆解耦结构、无记忆解耦结构的ST-LSTM网络和MIM(memory in memory)网络以及传统的单体质心法进行比较。预报评分因子数值比较和个例分析检验结果表明,预测神经网络在探测成功概率、临界成功指数上均高于单体质心法,虚警率低于单体质心法。加入记忆解耦结构的网络预报因子评分高于ST-LSTM网络和MIM网络,雷暴回波外推的预测效果更好,尤其是强回波的预测效果更好。 展开更多
关键词 循环神经网络 雷暴预测 气象雷达 深度学习
下载PDF
基于注意力机制的Encoder-Decoder光伏发电预测模型 被引量:9
20
作者 宋良才 索贵龙 +2 位作者 胡军涛 窦艳梅 崔志永 《计算机与现代化》 2020年第9期112-117,共6页
影响光伏发电系统出力的天气因素具有很大的波动性和不连续性,因此需要创建合适的预测模型来对光伏出力特性进行精准预测,从而保证电网系统的有效运行。本文通过最大信息系数选择合适的历史光伏发电数据,将其作为特征之一进行输入数据重... 影响光伏发电系统出力的天气因素具有很大的波动性和不连续性,因此需要创建合适的预测模型来对光伏出力特性进行精准预测,从而保证电网系统的有效运行。本文通过最大信息系数选择合适的历史光伏发电数据,将其作为特征之一进行输入数据重构,并在由LSTM神经元构建的Encoder-Decoder模型上引入注意力机制,最终得到结合注意力机制的Encoder-Decoder光伏发电预测模型。经实际光伏电厂算例分析,验证了所提模型在光伏发电预测方面的准确性和适用性。 展开更多
关键词 光伏发电 最大信息系数 长短期记忆神经网络 encoder-decoder框架 注意力机制
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部