期刊文献+
共找到385篇文章
< 1 2 20 >
每页显示 20 50 100
Effects of data smoothing and recurrent neural network(RNN)algorithms for real-time forecasting of tunnel boring machine(TBM)performance
1
作者 Feng Shan Xuzhen He +1 位作者 Danial Jahed Armaghani Daichao Sheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1538-1551,共14页
Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk... Tunnel boring machines(TBMs)have been widely utilised in tunnel construction due to their high efficiency and reliability.Accurately predicting TBM performance can improve project time management,cost control,and risk management.This study aims to use deep learning to develop real-time models for predicting the penetration rate(PR).The models are built using data from the Changsha metro project,and their performances are evaluated using unseen data from the Zhengzhou Metro project.In one-step forecast,the predicted penetration rate follows the trend of the measured penetration rate in both training and testing.The autoregressive integrated moving average(ARIMA)model is compared with the recurrent neural network(RNN)model.The results show that univariate models,which only consider historical penetration rate itself,perform better than multivariate models that take into account multiple geological and operational parameters(GEO and OP).Next,an RNN variant combining time series of penetration rate with the last-step geological and operational parameters is developed,and it performs better than other models.A sensitivity analysis shows that the penetration rate is the most important parameter,while other parameters have a smaller impact on time series forecasting.It is also found that smoothed data are easier to predict with high accuracy.Nevertheless,over-simplified data can lose real characteristics in time series.In conclusion,the RNN variant can accurately predict the next-step penetration rate,and data smoothing is crucial in time series forecasting.This study provides practical guidance for TBM performance forecasting in practical engineering. 展开更多
关键词 Tunnel boring machine(TBM) Penetration rate(PR) Time series forecasting Recurrent neural network(rnn)
下载PDF
基于RF-RNN模型的DNS隐蔽信道检测方法
2
作者 冯燕茹 《信息与电脑》 2024年第3期158-160,共3页
为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类... 为提高检测隐蔽信道的灵敏度,提出一种基于随机森林(Random Forest,RF)和循环神经网络(Recurrent Neural Network,RNN)的域名系统(Domain Name System,DNS)隐蔽信道检测方法。该方法采用域名检测作为主要手段,使用RF模型对域名进行分类,通过深度学习方法挖掘更高阶的特征表示。实验结果表明,与单一模型相比,该方法在检测准确性和健壮性方面均取得了显著提升。 展开更多
关键词 域名系统(DNS) 随机森林(RF) 循环神经网络(rnn)
下载PDF
Research of Energy-saving Control of Oil-well Power Heater Based on RNN Neural Network
3
作者 SUN Jingen YANG Yang 《沈阳理工大学学报》 CAS 2014年第4期87-94,共8页
For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of t... For the beam pumping unit,the power consumption of oil-well power heater accounts for a large part of the pumping unit.Decreasing the energy consumption of the power heater is an important approach to reduce that of the pumping unit.To decrease the energy consumption of oil-well power heater,the proper control method is needed.Based on summarizing the existing control method of power heater,a control method of oil-well power heater of beam pumping unit based on RNN neural network is proposed.The method is forecasting the polished rod load of the beam pumping unit through RNN neural network and using the polished rod load for real-time closed-loop control of the power heater,which adjusts average output power,so as to decrease the power consumption.The experimental data show that the control method is entirely feasible.It not only ensures the oil production,but also improves the energy-saving effect of the pumping unit. 展开更多
关键词 rnn neural network oil-wells power heating ENERGY-SAVING
下载PDF
Optimized Phishing Detection with Recurrent Neural Network and Whale Optimizer Algorithm
4
作者 Brij Bhooshan Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computers, Materials & Continua》 SCIE EI 2024年第9期4895-4916,共22页
Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detec... Phishing attacks present a persistent and evolving threat in the cybersecurity land-scape,necessitating the development of more sophisticated detection methods.Traditional machine learning approaches to phishing detection have relied heavily on feature engineering and have often fallen short in adapting to the dynamically changing patterns of phishingUniformResource Locator(URLs).Addressing these challenge,we introduce a framework that integrates the sequential data processing strengths of a Recurrent Neural Network(RNN)with the hyperparameter optimization prowess of theWhale Optimization Algorithm(WOA).Ourmodel capitalizes on an extensive Kaggle dataset,featuring over 11,000 URLs,each delineated by 30 attributes.The WOA’s hyperparameter optimization enhances the RNN’s performance,evidenced by a meticulous validation process.The results,encapsulated in precision,recall,and F1-score metrics,surpass baseline models,achieving an overall accuracy of 92%.This study not only demonstrates the RNN’s proficiency in learning complex patterns but also underscores the WOA’s effectiveness in refining machine learning models for the critical task of phishing detection. 展开更多
关键词 Phishing detection Recurrent Neural network(rnn) Whale Optimization Algorithm(WOA) CYBERSECURITY machine learning optimization
下载PDF
RNN循环神经网络的服务机器人交互手势辨识
5
作者 郑奕捷 李翠玉 郑祖芳 《机械设计与制造》 北大核心 2024年第4期282-285,共4页
服务机器人交互过程中机器人重要关节点难以确定,导致交互手势辨识难以增加,因此设计一种基于RNN循环神经网络的服务机器人交互手势辨识方法。利用Kinect捕获服务机器人交互手势深度图像,确定服务机器人交互过程中的重要关节点,提取服... 服务机器人交互过程中机器人重要关节点难以确定,导致交互手势辨识难以增加,因此设计一种基于RNN循环神经网络的服务机器人交互手势辨识方法。利用Kinect捕获服务机器人交互手势深度图像,确定服务机器人交互过程中的重要关节点,提取服务机器人交互手势特征。根据手势特征提取结果,定义手势模板,采用RNN循环神经网络对手势模板进行学习处理,搭建服务机器人交互手势辨识模型,得到相关的交互手势辨识结果。实验测试结果表明,采用所提方法可以快速获取高精度的服务机器人交互手势辨识结果,实际应用效果好。 展开更多
关键词 rnn循环神经网络 服务机器人 交互手势 辨识
下载PDF
基于多特征融合与双向RNN的细粒度意见分析 被引量:17
6
作者 郝志峰 黄浩 +1 位作者 蔡瑞初 温雯 《计算机工程》 CAS CSCD 北大核心 2018年第7期199-204,211,共7页
文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关... 文本细粒度意见分析主要有属性抽取和基于属性的情感分类2个任务,现有方法完成上述任务采用条件随机场(CRF)训练属性抽取模型,并运用循环神经网络(RNN)训练基于属性的情感分类模型。但同时完成2个任务则无法找到属性和情感倾向的对应关系。针对该问题,提出利用双向RNN构建基于序列标注的细粒度意见分析模型。通过融合文本的词向量、词性和依存关系等语言学特征,学习文本的修饰和语义信息,并设计一个时间序列标注模型,同时抽取属性实体判断文本的情感极性。在真实数据集上的实验结果表明,与CRF、TD-LSTM、AELSTM等模型相比,该模型情感分类效果提升明显。 展开更多
关键词 特征融合 词向量 循环神经网络 属性抽取 细粒度意见分析
下载PDF
BP+RNN变速积分PID算法的汽车底盘测功机控制系统 被引量:8
7
作者 周洲 陈宇轩 程鑫 《机械设计与制造》 北大核心 2021年第2期148-152,共5页
高精度的PID控制算法对汽车底盘测功机运行过程中的实时控制具有重要的作用,为此提出了一种面向汽车底盘测功机的BP+RNN变速积分PID算法控制系统:引入RNN加入时序性因素整定积分项参数,利用BP神经网络整定比例项与微分项参数,使用变速积... 高精度的PID控制算法对汽车底盘测功机运行过程中的实时控制具有重要的作用,为此提出了一种面向汽车底盘测功机的BP+RNN变速积分PID算法控制系统:引入RNN加入时序性因素整定积分项参数,利用BP神经网络整定比例项与微分项参数,使用变速积分PID算法作为其控制方法。实验结果表明该PID控制系统不但能够快速整定PID参数(10个控制周期以内),同时还保证控制超调量在目标值的2%以内。与传统的增量式PID算法控制相比,BP+RNN变速积分PID算法控制系统的参数整定简单快速,消除了静态误差,使汽车底盘测功机的控制性能得到大幅改善。 展开更多
关键词 变速积分PID 控制系统 BP神经网络 rnn网络 汽车底盘测功机
下载PDF
线性合成的双粒度RNN集成系统 被引量:2
8
作者 张亮 黄曙光 胡荣贵 《自动化学报》 EI CSCD 北大核心 2011年第11期1402-1406,共5页
针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字... 针对脱机文字识别,提出了一种基于线性合成的双粒度递归神经网络(Recurrent neural net work,RNN)集成系统.首先,使用单词RNN对未知图像进行识别;然后,依据识别结果进行字符分割,使用字符RNN对分割后的字符进行识别,并利用查表法计算字符的后验概率;最后,综合两个RNN的识别结果决定最终单词输出.在CAPTCHA识别和手写识别上的实验结果证明了该系统的有效性. 展开更多
关键词 脱机文字识别 递归神经网络 集成系统 字符分割
下载PDF
Text-CRNN+attention架构下的多类别文本信息分类 被引量:12
9
作者 卢健 马成贤 +1 位作者 杨腾飞 周嫣然 《计算机应用研究》 CSCD 北大核心 2020年第6期1693-1696,1701,共5页
迄今为止,传统机器学习方法依赖人工提取特征,复杂度高;深度学习网络本身特征表达能力强,但模型可解释性弱导致关键特征信息丢失。为此,以网络层次结合的方式设计了CRNN并引入attention机制,提出一种Text-CRNN+attention模型用于文本分... 迄今为止,传统机器学习方法依赖人工提取特征,复杂度高;深度学习网络本身特征表达能力强,但模型可解释性弱导致关键特征信息丢失。为此,以网络层次结合的方式设计了CRNN并引入attention机制,提出一种Text-CRNN+attention模型用于文本分类。首先利用CNN处理局部特征的位置不变性,提取高效局部特征信息;然后在RNN进行序列特征建模时引入attention机制对每一时刻输出序列信息进行自动加权,减少关键特征的丢失,最后完成时间和空间上的特征提取。实验结果表明,提出模型较其他模型准确率提升了2%~3%;在提取文本特征时,该模型既保证了数据的局部相关性又起到强化序列特征的有效组合能力。 展开更多
关键词 文本分类 卷积神经网络 循环神经网络 convolutional recurrent neural network 注意力机制
下载PDF
基于GRU改进RNN神经网络的飞机燃油流量预测 被引量:23
10
作者 陈聪 候磊 +1 位作者 李乐乐 杨鑫涛 《科学技术与工程》 北大核心 2021年第27期11663-11673,共11页
利用从飞机快速存储记录器(quick access recorder,QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network,RNN)及其改进网络门控循环单元(gate recurrent unit,GRU)进行飞机燃油流量预测的模型。首先使用基于... 利用从飞机快速存储记录器(quick access recorder,QAR)中获取的大量数据设计研究了一种利用循环神经网络(recurrent neural network,RNN)及其改进网络门控循环单元(gate recurrent unit,GRU)进行飞机燃油流量预测的模型。首先使用基于时间的反向传播算法(back propagation trough time,BPTT)训练网络,Adam优化算法加速迭代更新神经网络权重。在参数调整实验中发现循环神经网络对历史信息利用能力不足,极易发生梯度消失与梯度爆炸,遂提出改进网络结构,引入GRU重构燃油流量预测模型。在最优的超参数条件下,重构模型在训练集和测试集上的损失函数均方误差(mean squared error,MSE)值分别为0.00108、0.00097。通过与朴素RNN的预测曲线和MSE对比可以发现,改进后的GRU网络能够“记忆”更多历史信息而不易出现梯度消失或梯度爆炸的问题,预测精度与曲线拟合能力显著提高。因此,GRU重构模型显著改善了预测能力,并通过实际案例验证该预测模型在故障诊断等领域的应用。 展开更多
关键词 燃油流量预测 rnn神经网络 GRU神经网络 BPTT算法
下载PDF
基于RNN的中文二分结构句法分析 被引量:15
11
作者 谷波 王瑞波 +1 位作者 李济洪 李国臣 《中文信息学报》 CSCD 北大核心 2019年第1期35-45,共11页
为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换... 为了构建一个简单易扩展的中文句法分析器,我们依据朱德熙和陆俭明先生的中文二分结构的层次分析句法理论,手工构建了一个3万句的二分结构的中文句法树库,并使用哈夫曼编码方式来简化表示完全二叉树的层次结构。该文将中文句法分析转换为迭代二分的序列标注问题,并根据该任务的特点,提出了在词的间隔上进行标记的序列标注模型(RNN-Interval,RNN-INT),与常用的循环神经网络模型(RNN,LSTM)和条件随机场模型(CRF)进行对比实验,使用mx2交叉验证序贯t-检验来比较模型。实验结果表明,RNN-INT模型在窗口为1的词特征就可达到最好的性能,并好于其他窗口大小和其他序列标注模型(RNN,LSTM,CRF)。最后,在测试集上,在人工分词下,RNN-INT在短语级别的F1值(块F1)达到71.25%,在句子级别的准确率达到约43%。 展开更多
关键词 层次句法分析 循环神经网络(rnn) m×2CV序贯t-检验
下载PDF
基于RNN集成学习的个人轨迹恢复方法 被引量:2
12
作者 鲁强 刘歆琦 《计算机工程》 CAS CSCD 北大核心 2019年第3期188-196,201,共10页
从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义。基于个人轨迹恢复,提出RNN集成学习方法。定义个人轨迹恢复的形式化模型,利用轨迹点数目采样模式将每个训练库划分为多个训练子库,并采用RNN网... 从多个轨迹数据库中连接并恢复出较为完整的个人轨迹对出行推荐和移动导航具有重要的意义。基于个人轨迹恢复,提出RNN集成学习方法。定义个人轨迹恢复的形式化模型,利用轨迹点数目采样模式将每个训练库划分为多个训练子库,并采用RNN网络模型描述个人轨迹的可拼接程度,使用集成学习方法构建多个RNN网络,以达到恢复个人轨迹的目的。实验结果表明,该方法可以较好地捕获轨迹时空连续性特征,实现个人轨迹恢复。 展开更多
关键词 轨迹恢复 轨迹拼接 集成学习 神经网络 rnn网络
下载PDF
基于BLSTM-RNN的船舶轨迹修复方法 被引量:5
13
作者 王贵槐 钟诚 +1 位作者 初秀民 张代勇 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第10期7-12,67,共7页
针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性... 针对内河干线船舶AIS轨迹数缺失问题,提出一种基于双向长短时记忆网络(BLSTM-RNN)模型的船舶轨迹数据修复方法。通过利用船舶轨迹上下文信息及其他回传特征作为模型输入,构建两层的双向循环神经网络(RNN)模型。在模型输入上,采用相关性分析及序列自相关系数,确定船舶轨迹点相关变量及轨迹序列自相关滞后值;在模型结构上,以ACC率为指标对模型超参数值进行合理设置,以长江干线航道武汉段及重庆段船舶轨迹数据为样本,对模型进行实证验证。实验结果表明:与线性及其他机器学习方法相比BLSTM-RNN方法在精度上有一定提升;在武汉段顺直河段实验中,将修复误差控制在15 m量级内,远低于其他非线性方法的50 m量级;在重庆复杂河段内,可将修复误差控制在10 m量级;模型解决了传统方法在长距离丢失点上精度缺失的问题,在20个连续点丢失的情况上,将修复误差降低至50m量级。 展开更多
关键词 船舶工程 双向长短时记忆网络(BLSTM) 循环神经网络(rnn) 船舶轨迹修复 船舶自动驾驶
下载PDF
基于RNN和主题模型的社交网络突发话题发现 被引量:16
14
作者 石磊 杜军平 梁美玉 《通信学报》 EI CSCD 北大核心 2018年第4期189-198,共10页
社交网络数据是稀疏和嘈杂的,并伴有大量的无意义话题。传统突发话题发现方法无法解决社交网络短文本稀疏性问题,并需要复杂的后处理过程。为了解决上述问题,提出一种基于循环神经网络(RNN,recurrent neural network)和主题模型的突发... 社交网络数据是稀疏和嘈杂的,并伴有大量的无意义话题。传统突发话题发现方法无法解决社交网络短文本稀疏性问题,并需要复杂的后处理过程。为了解决上述问题,提出一种基于循环神经网络(RNN,recurrent neural network)和主题模型的突发话题发现(RTM-SBTD)方法。首先,综合RNN和逆序文档频率(IDF,inverse document frequency)构建权重先验来学习词的关系,同时通过构建词对解决短文本稀疏性问题。其次,模型中引入针板先验(spike and slab)来解耦突发话题分布的稀疏和平滑。最后,引入词的突发性来区分建模普通话题和突发话题,实现突发话题自动发现。实验结果表明与现有的主流突发话题发现方法相比,所提RTM-SBTD方法在多种评价指标上优于对比算法。 展开更多
关键词 社交网络 突发话题发现 主题模型 循环神经网络
下载PDF
SVM和RNN在网络评论情感分析中的比较研究 被引量:3
15
作者 吴国栋 刘国良 +1 位作者 张凯 涂立静 《上海工程技术大学学报》 CAS 2019年第4期378-383,共6页
随着电子商务的迅猛发展,网络评论情感分析研究日益受到重视.分别从传统的机器学习模型和深度学习模型视角,运用支持向量机(Support Vector Machine,SVM)和循环神经网络(Recurrent Neural Network,RNN)方法对向量化表示后的网络评论文... 随着电子商务的迅猛发展,网络评论情感分析研究日益受到重视.分别从传统的机器学习模型和深度学习模型视角,运用支持向量机(Support Vector Machine,SVM)和循环神经网络(Recurrent Neural Network,RNN)方法对向量化表示后的网络评论文本进行情感倾向的学习分析.研究表明,在精确率、召回率及F1等评价指标方面,基于RNN模型的评论情感分析效果明显优于SVM模型.该结果可以帮助消费者更好进行网络消费决策. 展开更多
关键词 支持向量机 循环神经网络 评论文本 情感分析 词向量
下载PDF
基于RNN模型与LSTM模型的机器作诗研究 被引量:5
16
作者 武丽芬 严学勇 赵吉 《科技创新与应用》 2021年第27期48-50,共3页
现如今自然语言处理在人类生产生活中起到极其重要的作用,随着各类机器学习算法以及深度神经网络的发展,各类写诗机器人频频出现。文章通过机器写诗系统研究了循环神经网络(RNN)与长短期记忆网络(LSTM)在唐诗写作方面的模型效果。本系... 现如今自然语言处理在人类生产生活中起到极其重要的作用,随着各类机器学习算法以及深度神经网络的发展,各类写诗机器人频频出现。文章通过机器写诗系统研究了循环神经网络(RNN)与长短期记忆网络(LSTM)在唐诗写作方面的模型效果。本系统基于谷歌开源的深度学习框架TensorFlow,Python作为开发语言,交叉熵损失作为实验结果评价依据进行研究,其结果有力证明了LSTM模型在作诗方面的优越性,并阐释了其具有优越性的具体原因。 展开更多
关键词 深度学习 循环神经网络 长短期记忆网络 TensorFlow
下载PDF
基于小波包变换和Replicator Neural Network的单位置结构损伤检测 被引量:1
17
作者 张祥 陈仁文 《机械强度》 CAS CSCD 北大核心 2020年第3期509-515,共7页
为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network(RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结... 为了实现对结构的损伤检测,提出一种基于小波包变换和Replicator Neural Network(RNN)的单位置结构损伤检测方法。首先采用小波包变换对原始振动响应信号进行分解,计算分解得到的各频带的相对频带能量,这些相对频带能量的分布反映了结构特性。然后,将健康结构的相对频带能量作为输入训练RNN。最后,利用训练后的网络即可对结构进行实时损伤检测。实验表明,即使在有噪声干扰下,该方法仍然能够检测出结构是否存在损伤。 展开更多
关键词 Replicator Neural network 小波包变换 相对频带能量 结构损伤检测
下载PDF
基于RNN神经网络的人力资源管理风险预警模型 被引量:7
18
作者 徐静 王勃 孙雪莹 《计算机与数字工程》 2020年第7期1727-1730,共4页
人力资源管理是现代企业管理体系中的重要内容,随着当前经济高速发展,企业的人力资源管理框架是否完善,将关系到企业在市场竞争中的发展前景。企业在实际运行过程中,人力资源管理存在诸多不确定因素,造成人力资源管理的风险加剧。为了... 人力资源管理是现代企业管理体系中的重要内容,随着当前经济高速发展,企业的人力资源管理框架是否完善,将关系到企业在市场竞争中的发展前景。企业在实际运行过程中,人力资源管理存在诸多不确定因素,造成人力资源管理的风险加剧。为了降低并有效控制管理风险,根据实际需要,通过对人力资源管理风险指标整合并进行可行性分析,利用RNN神经网络的优势和特点,通过RNN神经网络学习、训练和检测大量可行性数据,建立基于RNN神经网络的人力资源管理风险预警模型。该模型具有较为完整的体系,能够及时为企业在人力资源管理中的风险决策提供较为准确地数据,具有较为实用的价值。 展开更多
关键词 rnn神经网络 人力资源管理 风险 预警模型
下载PDF
HS-RNN在机械主轴振动预报方法中的研究 被引量:2
19
作者 片锦香 智杰峰 《机械设计与制造》 北大核心 2020年第8期85-89,共5页
机械主轴在高速运行过程中由于转子质量分布不均,造成主轴振动,从而影响其加工精度,因此常常采用动平衡方法来降低此类原因造成的振动。由于机械主轴长时间工作在变化频繁的工况条件下,难以在较短的时间内对主轴振动值进行准确调节,因... 机械主轴在高速运行过程中由于转子质量分布不均,造成主轴振动,从而影响其加工精度,因此常常采用动平衡方法来降低此类原因造成的振动。由于机械主轴长时间工作在变化频繁的工况条件下,难以在较短的时间内对主轴振动值进行准确调节,因此机械主轴振动预报模型对动平衡调节有着重要意义。机械主轴振动预报模型机理复杂,振动幅值具有随转速变化而非线性变化的特性,难以建立精确的机械主轴振动预报模型。且内置平衡块位置的选择忽略了变化工况对位置更新参数的影响,导致机械主轴振动预报模型精度较低。采用RNN(Recurrent Neural Network)递归神经网络建立机械主轴振动预报模型,对内置平衡块不同位置和主轴转速下的振动幅值预报,并引入HS(Harmony Search)和声搜索算法对平衡块位置参数通过自学习更新,从而提高机械主轴振动预报模型的精度。实验结果表明,提出的基于HSRNN的机械主轴振动预报方法能够自动确定网络结构,并对机械主轴的振动幅值进行准确预报。 展开更多
关键词 和声搜索算法 rnn递归神经网络 振动预报 机械主轴
下载PDF
一种类RNN的改进ISTA稀疏脉冲反褶积
20
作者 潘树林 闫柯 +2 位作者 杨海飞 蒋从元 秦子雨 《石油物探》 EI CSCD 北大核心 2019年第4期533-540,共8页
稀疏脉冲反褶积方法对提高地震资料分辨率有着重要作用,迭代阈值收缩算法(ISTA)是其核心算法,首先利用地震数据提取子波,再利用ISTA求解反射系数.当地震子波提取不准确时,反褶积效果不理想.为此,在ISTA基础上,结合循环神经网络(RNN)中... 稀疏脉冲反褶积方法对提高地震资料分辨率有着重要作用,迭代阈值收缩算法(ISTA)是其核心算法,首先利用地震数据提取子波,再利用ISTA求解反射系数.当地震子波提取不准确时,反褶积效果不理想.为此,在ISTA基础上,结合循环神经网络(RNN)中反向传播(BPTT)的思想,研究形成了一种类RNN的改进ISTA稀疏脉冲反褶积方法.该算法首先使用常规手段从实际地震数据中提取地震子波,构建反褶积的子波字典;然后将构建的地震子波字典作为已知的初始条件,结合ISTA求取的反射系数;再根据BPTT算法思想,将求取的反射系数与子波褶积并与实际数据进行比较,反向修改地震子波;最终,经过多次迭代修改获得合理的地震子波字典,并利用该地震子波字典求解实际地震数据的反射系数序列.为验证算法的有效性,采用不同信噪比的理论地震记录,给定存在较大误差的初始子波,进行了反褶积计算.采用传统的ISTA和类RNN的改进ISTA进行对比处理,结果表明,改进ISTA具有较好的抗噪能力和子波自适应能力,可使实测地震资料的有效频带拓展约1.5倍,能够较好地适应实际地震资料的反褶积处理. 展开更多
关键词 稀疏脉冲反褶积 分辨率 ISTA 地震子波 信噪比 循环神经网络 反向传播
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部