针对Robo Cup(Robot World Cup)中,多Agent之间的配合策略问题,采用了一种局部合作的多Agent Q-学习方法:通过细分球场区域和Agent回报值的方法,加强了Agent之间的协作能力,从而增强了队伍的进攻和防守能力。同时通过约束此算法的使用范...针对Robo Cup(Robot World Cup)中,多Agent之间的配合策略问题,采用了一种局部合作的多Agent Q-学习方法:通过细分球场区域和Agent回报值的方法,加强了Agent之间的协作能力,从而增强了队伍的进攻和防守能力。同时通过约束此算法的使用范围,减少了学习所用的时间,确保了比赛的实时性。最后在仿真2D平台上进行的实验证明,该方法比以前的效果更好,完全符合初期的设计目标。展开更多
针对Robocup仿真足球比赛中本位点区域化跑位的局限性,在三角剖分的阵型设计基础上将蒙特卡洛树搜索算法引入2D仿真中,将球员智能体在球场上的状态定义为博弈树节点,将双方球员的动作选择视为节点间的状态转移,对于球队的防守任务建立...针对Robocup仿真足球比赛中本位点区域化跑位的局限性,在三角剖分的阵型设计基础上将蒙特卡洛树搜索算法引入2D仿真中,将球员智能体在球场上的状态定义为博弈树节点,将双方球员的动作选择视为节点间的状态转移,对于球队的防守任务建立蒙特卡洛树模型。利用极坐标方式对球场进行区域分割,结合Q学习与蒙特卡洛树搜索中的信心上限树算法(Upper Confidence Bound Apply to Tree of Monte Carlo)进行球队训练,将训练结果的动作评估值用于优化比赛代码,使得球队的防守能力得到了较大程度的提升。展开更多
文摘针对Robo Cup(Robot World Cup)中,多Agent之间的配合策略问题,采用了一种局部合作的多Agent Q-学习方法:通过细分球场区域和Agent回报值的方法,加强了Agent之间的协作能力,从而增强了队伍的进攻和防守能力。同时通过约束此算法的使用范围,减少了学习所用的时间,确保了比赛的实时性。最后在仿真2D平台上进行的实验证明,该方法比以前的效果更好,完全符合初期的设计目标。
文摘针对Robocup仿真足球比赛中本位点区域化跑位的局限性,在三角剖分的阵型设计基础上将蒙特卡洛树搜索算法引入2D仿真中,将球员智能体在球场上的状态定义为博弈树节点,将双方球员的动作选择视为节点间的状态转移,对于球队的防守任务建立蒙特卡洛树模型。利用极坐标方式对球场进行区域分割,结合Q学习与蒙特卡洛树搜索中的信心上限树算法(Upper Confidence Bound Apply to Tree of Monte Carlo)进行球队训练,将训练结果的动作评估值用于优化比赛代码,使得球队的防守能力得到了较大程度的提升。