期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Stem cells in neuroinjury and neurodegenerative disorders: challenges and future neurotherapeutic prospects 被引量:9
1
作者 Tarek H.Mouhieddine Firas H.Kobeissy +2 位作者 Muhieddine Itani Amaly Nokkari Kevin K.W.Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第9期901-906,共6页
The prevalence of neurodegenerative diseases and neural injury disorders is increasing worldwide. Research is now focusing on improving current neurogenesis techniques including neural stem cell therapy and other bioc... The prevalence of neurodegenerative diseases and neural injury disorders is increasing worldwide. Research is now focusing on improving current neurogenesis techniques including neural stem cell therapy and other biochemical drug-based approaches to ameliorate these disorders. Unfortunately, we are still facing many obstacles that are rendering current neurotherapies ineffective in clinical trials for reasons that are yet to be discovered. That is why we should start by fully understanding the complex mechanisms of neurogenesis and the factors that affect it, or else, all our suggested therapies would fail since they would not be targeting the essence of the neurological disorder but rather the symptoms. One possible paradigm shift is to switch from neuroprotectant therapies towards neurodegeneration/neurorestorative approaches. In addition, other and our laboratories are increasingly focusing on combining the use of pharmacological agents(such as Rho-associated kinase(ROCK) inhibitors or other growth factors(such as brain-derived neurotrophic factor(BDNF)) and stem cell treatment to enhance the survivability and/or differentiation capacity of transplanted stem cells in neurotrauma or other neurodegeneration animal models. Ongoing stem cell research is surely on the verge of a breakthrough of multiple effective therapeutic options for neurodegenerative disorders. Once, we fully comprehend the process of neurogenesis and its components, we will fully be capable of manipulating and utilizing it. In this work, we discuss the current knowledge of neuroregenerative therapies and their associated challenges. 展开更多
关键词 neural stem cells NEURODEGENERATION neuroinjury TBI rho-associated kinaserock inhibitor BDNF growth factors stem cell therapy
下载PDF
Upregulation of miR-345-5p suppresses cell growth of lung adenocarcinoma by regulating ras homolog family member A(RhoA)and Rho/Rho associated protein kinase(Rho/ROCK)pathway 被引量:1
2
作者 Qiao-Yun Zhou Shu-Yu Gui +1 位作者 Peng Zhang Mei Wang 《Chinese Medical Journal》 SCIE CAS CSCD 2021年第21期2619-2628,共10页
Background:Microribose nucleic acids(miRNAs)are implicated in the progression of lung adenocarcinoma.MicroRNA-345-5p(miR-345-5p)is a recently identified anti-oncogene in some human cancers,but its functional role and ... Background:Microribose nucleic acids(miRNAs)are implicated in the progression of lung adenocarcinoma.MicroRNA-345-5p(miR-345-5p)is a recently identified anti-oncogene in some human cancers,but its functional role and possible molecular mechanism in lung adenocarcinoma remain unknown.This study aimed to identify the biological function and underlying mechanism of miR-345-5p in lung adenocarcinoma cells.Methods:In this study,lung adenocarcinoma tissues and adjacent tissues were collected in the First Affiliated Hospital of Anhui Medical University between April 2016 and February 2017.The expression of miR-345-5p and ras homolog family member A(RhoA)in lung adenocarcinoma tissues and human lung adenocarcinoma cell lines(A549,H1650,PC-9,and H441)was detected by reverse transcription quantitative polymerase chain reaction analysis.Functional assays including colony formation,flow cytometry analysis,wound healing,and transwell assays were performed to assess the proliferation,apoptosis,migration,and invasion of lung adenocarcinoma cells.In addition,RNA pulldown and luciferase reporter assays were conducted to evaluate the relationship between miR-345-5p and RhoA.Difference between the two groups was analyzed with Student’st test,while that among multiple groups was analyzed with one-way analysis of variance.Results:MiR-345-5p expression displayed lower level in lung adenocarcinoma tissues(0.241±0.095vs.1.000±0.233,t=19.247,P<0.001)and cell lines(F=56.992,P<0.001)than control tissues and cells.Functional experiments demonstrated that upregulation of miR-345-5p inhibited the malignant phenotypes of lung adenocarcinoma cells via suppressing cell proliferation,migration,invasion,and facilitating cell apoptosis.Additionally,RhoA was verified to be the downstream target of miR-345-5p.Expression of RhoA was downregulated by overexpression of miR-345-5p in PC-9(0.321±0.047vs.1.000±0.127,t=8.536,P<0.001)and H1650(0.398±0.054vs.1.000±0.156,t=4.429,P=0.011)cells.Rescue assays revealed that overexpression of RhoA rescued the suppressive effects of miR-345-5p upregulation on proliferation,migration,and invasion of lung adenocarcinoma cells.Further,miR-345-5p was found to regulate the Rho/Rho-associated protein kinase(ROCK)signaling pathway by downregulation of RhoA in lung adenocarcinoma cells.Conclusions:MiR-345-5p plays a tumor suppressor role in lung adenocarcinoma cells by downregulating RhoA to inactivate the Rho/ROCK pathway. 展开更多
关键词 MicroRNA-345-5p Lung adenocarcinoma Ras homolog family member A(RhoA) Rho/Rho-associated protein kinase(rock)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部