Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigate...The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.展开更多
Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years...Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.展开更多
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ...Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.展开更多
Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating...Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating the impacts of environmental changes. The exploitation of these resources invariably leads to deforestation and forest degradation. This study was designed to evaluate land use land cover change (LULCC) in the Eseka alluvial gold mining district with the aid of Landsat images. In the investigation of forest cover change, four Landsat satellite images for (1990, 2002, 2015 and 2022) were used. Ground-truthing also helped to identify the activities carried out by the local population and to determine agents, drivers and pressures of land use and land cover change. Four main land cover classes namely: forest, agricultural land, settlement/mining camps and water bodies were selected. Between 1990 and 2022, the proportion of forest decreased from 98% to 34% while those of agricultural land and settlement/mining camps increased from 2% to 60% and 0.54% to 6% respectively. Analysis showed ongoing deforestation with forest cover loss of ~98,263 ha in 32 years giving a cover change percentage of 63.94%. Kappa coefficient for the study period ranged from 0.92 to 0.99. Forest cover loss could be attributed to farming activities, wood extraction and alluvial gold mining activities. Economic motives notably the need to increase household income from a frequent demand for farm and wood products in neighbouring towns and the quest for gold were the main drivers of these activities. Hence, this study assesses the impact of human activities from the mining sector on the forest ecosystem in a bid to inform mitigation policies.展开更多
The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little i...The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.展开更多
The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in M...The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in March EAT is closely related to that of April EAT.Extended empirical orthogonal function(EEOF)analysis also confirms the co-variation of the March and April EATs.The positive/negative EEOF1 features the persistent strengthened/weakened EAT from March to April.Further investigation indicates that the variations in EEOF1 are related to a dipole sea surface temperature(SST)pattern over the North Atlantic and the SST anomaly over the tropical Indian Ocean.The dipole SST pattern over the North Atlantic,with one center east of Newfoundland Island and another east of Bermuda,could trigger a Rossby wave train to influence the EAT in March−April.The SST anomaly over the tropical Indian Ocean can change the Walker circulation and influence the atmospheric circulation over the tropical western Pacific,subsequently impacting the southern part of the EAT in March−April.Besides the SST factors,the Northeast Asian snow cover could change the regional thermal conditions and lead to persistent EAT anomalies from March to April.These three impact factors are generally independent of each other,jointly explaining large variations in the EAT EEOF1.Moreover,the signals of the three factors could be traced back to February,consequently providing a potential prediction source for the EAT variation in March and April.展开更多
Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of ...Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3°to 18°.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d_(10) of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively.展开更多
In recent decades,the rapid climate warming in polar and alpine regions has been accompanied by an expan-sion of shrub vegetation.However,little is known about how changes in shrub distribution will change as the dist...In recent decades,the rapid climate warming in polar and alpine regions has been accompanied by an expan-sion of shrub vegetation.However,little is known about how changes in shrub distribution will change as the distribution of tree species and snow cover changes as temperatures rise.In this work,we analyzed the main environmental factors influencing the distribution and structure of Juniperus sibir-ica,the most common shrub species in the Southern Ural Mountains.Using mapping and digital elevation models,we demonstrated that J.sibirica forms a well-defined vegeta-tion belt mainly between 1100 and 1400 m a.s.l.Within this zone,the abundance and cover of J.sibirica are influenced by factors such as rockiness,slope steepness,water regime and tree(Picea obovata)cover.An analysis of data spanning the past 9 years revealed an upward shift in the distribution of J.sibirica with a decrease in its area.The primary limit-ing factors for the distribution of J.sibirica were the removal of snow cover by strong winter winds and competition with trees.As a consequence of climatic changes,the tree line and forest limit have shifted upward,further restricting the distribution of J.sibirica to higher elevations where com-petition for light with trees is reduced and snow cover is sufficiently deep.展开更多
Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soi...Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soil health remains a major concern for the sustainability of agricultural productivity, therefore, research into CC implementation as a mean to preserve or improve soil health is warranted. The objective of this study was to evaluate the effects of CC on the soils in the eastern Arkansas portion of the Lower Mississippi River Valley (LMRV) over time for various chemical soil parameters, including pH, soil organic matter (SOM), soil elemental contents (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B), soil respiration, and a generalized soil health score index. Soil pH decreased over time under both CC and no-cover-crop (NCC) treatments, by −0.3 and −0.2, respectively. Soil OM decreased over time under NCC by −0.1%, but did not differ between CC treatments. Soil N availability decreased over time under NCC (−22.6 kg·ha−1), but did not change over time under CC. Soil respiration decreased over time under both CC and NCC, by −76.1 mg·L−1 and −77.3 mg·L−1, respectively, though there was no effect of CC treatment. The Haney soil health score index decreased under CC (−7.0) and NCC (−6.8) without an effect from CC treatment. Results of the study place emphasis on the temporal nature of soil health as influenced by cover crops and their potential to improve soil health.展开更多
The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influ...The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.展开更多
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an...The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.展开更多
A high-resolution customized numerical model is used to analyze the water transport in the three major water passages between the Andaman Sea(AS)and the Bay of Bengal,i.e.,the Preparis Channel(PC),the Ten Degree Chann...A high-resolution customized numerical model is used to analyze the water transport in the three major water passages between the Andaman Sea(AS)and the Bay of Bengal,i.e.,the Preparis Channel(PC),the Ten Degree Channel(TDC),and the Great Channel(GC),based on the daily averaged simulation results ranging from 2010 to 2019.Spectral analysis and Empirical Orthogonal Function(EOF)methods are employed to investigate the spatiotemporal variability of the water exchange and controlling mechanisms.The results of model simulation indicate that the net average transports of the PC and GC,as well as their linear trend,are opposite to that of the TDC.This indicates that the PC and the GC are the main inflow channels of the AS,while the TDC is the main outflow channel of the AS.The transport variability is most pronounced at surface levels and between 100 m and 200 m depth,likely affected by monsoons and circulation.A 182.4-d semiannual variability is consistently seen in all three channels,which is also evident in their second principal components.Based on sea level anomalies and EOF analysis results,this is primarily due to equatorial winds during the monsoon transition period,causing eastward movement of Kelvin waves along the AS coast,thereby affecting the spatiotemporal characteristics of the flow in the AS.The first EOF of the PC flow field section shows a split at 100 m deep,likely due to topography.The first EOF of the TDC flow field section is steady but has potent seasonal oscillations in its time series.Meanwhile,the first EOF of the GC flow field section indicates a stable surface inflow,probably influenced by the equatorial Indian Ocean’s eastward current.展开更多
Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise ...Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.展开更多
The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central ...The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.展开更多
With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to th...With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.展开更多
Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment c...Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.展开更多
Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic e...Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic environment.Natural and anthropogenic changes in ground cover are important factors affecting the absorption of solar radiation at the ground surface.This phenomenon is particularly pronounced in the mid and high latitudes.In order to quantify the inf luence of surface cover change on the absorption of solar radiation at the surface and to provide a scientific basis for changes in the climatic environment,this paper analyzed ground cover change,ground absorbed solar radiation change and the effect of ground cover change on ground absorbed solar radiation in the Three Northeastern Provinces of China from 2001 to 2018.Materials and methods In this study,the Three Northeastern Provinces of China were used as the study area.Firstly,satellite remote sensing data were used to obtain land cover data and albedo data for Aug.1st of each year in 2001,2005,2010,2015 and 2018.The albedo data were further used to calculate the absorbed solar radiation data at the ground surface.Next,the land cover data were used to count the area changes and shifts of different land classes over the five-year period.The land cover data were overlaid with the surface absorbed solar radiation data to obtain the mean and standard deviation of radiation absorption for different ground classes.The surface absorbed solar radiation data were subtracted to obtain the changes in surface absorbed solar radiation for 2001-2005,2005-2010,2010-2015 and 2015-2018.Ultimately,we used a combination of shifted changes in ground classes and changes in surface absorbed solar radiation data,with unchanged ground classes as a baseline and data such as slope orientation as an aid.We analyzed the effect of ground cover change on surface absorbed solar radiation at regional and pixel point scales.Results(1)The area of woodland and waters in the Three Northeastern Provinces of China increased and then decreased from 2001 to 2018,with an overall increase of 3.96%and 10.51%respectively.Cropland decreased and then increased,with a total decrease of 1.22%.Grassland continued to decrease,with an overall decrease of 19.36%.Building sites increased all the time,with a total increase of 11.08%.The main types of ground cover shifted were woodland,cropland and grassland.The main factors for the change in ground cover were China’s woodland protection policy and the saturation of the total woodland stock.(2)The five ground types absorb solar radiation in the order of waters>building sites>woodland>grassland>cropland.The surface absorption of solar radiation in the Songnen Plain,the Sanjiang Plain and the Songhua River Basin flowing through the Songnen Plain and the Sanjiang Plain varies significantly,by more than 25 W·m^(-2).(3)Changes in the ground cover type affected the absorption of solar radiation energy by the ground surface.There was a clear trend of interconversion between waters and cropland/grassland,cropland and woodland/grassland.In particular,the conversion of waters to both cropland and grassland radiation absorption values decreased significantly,while the opposite increased.The absolute difference between waters and cropland was a maximum of -156.66 W·m^(-2)in 2010-2015,and between waters and grassland was a maximum of 102.36 W·m^(-2) in 2005-2010.The radiative absorption values of woodland and grassland reclamation declined and conversely increased.The absolute difference between woodland and cropland was a maximum of-13.94 W·m^(-2) in 2010-2015 when woodland converted to cropland,and between grassland and cropland was a maximum of 22.36 W·m^(-2) in 2001-2005 when cropland converted to grassland,respectively.Discussion Ground cover changes in the Three Northeastern Provinces of China from 2001-2018 were inextricably linked to natural factors and the inf luence of Chinese national policies.The main inf luencing factors were China’s woodland protection policy,restoration of woodland fire sites,saturation of total woodland,optimization of cropland patterns,sanding of grassland,expansion of water conservancy projects,and urbanization expansion.There were differences in the radiation absorption characteristics of different ground cover types.This was due to the nature of the ground type itself and the regional environment.When ground cover types changed,their ability to absorb solar radiation also changed.The degree of change could be inf luenced by different ground types and different environmental factors.Different spatial scales can also produce variability.We need to consider the effects of ground cover change on the absorption of solar radiation at the surface in an integrated and comprehensive way.Conclusions The Three Northeastern Provinces of China had frequent changes in ground cover from 2001-2018,with the area of grassland decreased by almost 20%.These changes were due to natural environmental change and policies issued by China since the 21st century.The extent to which solar radiation was absorbed by different ground cover types was different,with grassland being the strongest and cropland the least.In the past few years,the Songnen Plain and Sanjiang Plain regions were the most significant changes in the absorption of solar radiation by the ground cover.The change in ground cover type led to a change in solar radiation absorption at the ground surface,with the conversion of waters to cropland or grassland and the conversion of cropland to woodland or grassland showing the greatest change in radiation absorption values,and vice versa.Of these,the absolute difference in the conversion of waters to cropland amounts to-156.66 W·m^(-2) in 2010-2015.The variation in the absorption of solar radiation at the ground surface was related to the characteristics of the ground class itself,but was also limited by the regional environment.Recommendations and perspectives This study showed that surface cover change can affect the absorption of solar radiation at the surface to varying degrees.The unchanged land classes were used as a comparative analysis in this paper,and it was clear from the paper that some of the unchanged land classes showed significant changes in radiation absorption that should be of interest in future studies.展开更多
This study focuses on the landscape dynamics of the savannahs’ region in the far north of Togo. Based on a literature review and satellite images analysis using GIS and remote sensing, the study aims to ascertain the...This study focuses on the landscape dynamics of the savannahs’ region in the far north of Togo. Based on a literature review and satellite images analysis using GIS and remote sensing, the study aims to ascertain the effects of anthropogenic threats on the forest coverage of the Savannahs’ Region between 1984 to 2020. The objective is to clarify the dynamics of land use in the region from 1984 to 2000 and from 2000 to 2020. The findings indicate a significant decline in forest coverage within the region from 1984 to 2020, a trend attributed to land use patterns. Dry forests in the Savannah region are largely converted to farmlands, housing, dry savannahs or agroforestry parks, leading to a steady reduction in forest areas.展开更多
The greatest environmental disaster in Central Asiathe drying up of the Aral Seahas led to the formation of a new terrain, extending over 2.7 million hectares in Uzbekistan. This newly formed terrain is dynamically de...The greatest environmental disaster in Central Asiathe drying up of the Aral Seahas led to the formation of a new terrain, extending over 2.7 million hectares in Uzbekistan. This newly formed terrain is dynamically developing, with emerging soil formations replacing bottom sediments. This paper analyzes the results of a study on soil formation in the eastern part of the dried-up seabed, focusing on the influence of natural processes occurring there.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金This research is funded by the National Natural Science Foundation of China(Grant No.42075050)Fundamental Research Funds for the Central Universities(Grant No.K20220232).
文摘The spring snow cover(SC)over the western Tibetan Plateau(TP)(TPSC)(W_TPSC)and eastern TPSC(E_TPSC)have displayed remarkable decreasing and increasing trends,respectively,during 1985–2020.The current work investigates the possible mechanisms accounting for these distinct TPSC changes.Our results indicate that the decrease in W_TPSC is primarily attributed to rising temperatures,while the increase in E_TPSC is closely linked to enhanced precipitation.Local circulation analysis shows that the essential system responsible for the TPSC changes is a significant anticyclonic system centered over the northwestern TP.The anomalous descending motion and adiabatic heating linked to this anticyclone leads to warmer temperatures and consequent snowmelt over the western TP.Conversely,anomalous easterly winds along the southern flank of this anticyclone serve to transport additional moisture from the North Pacific,leading to an increase in snowfall over the eastern TP.Further analysis reveals that the anomalous anticyclone is associated with an atmospheric wave pattern that originates from upstream regions.Springtime warming of the subtropical North Atlantic(NA)sea surface temperature(SST)induces an atmospheric pattern resembling a wave train that travels eastward across the Eurasian continent before reaching the TP.Furthermore,the decline in winter sea ice(SIC)over the Barents Sea exerts a persistent warming influence on the atmosphere,inducing an anomalous atmospheric circulation that propagates southeastward and strengthens the northwest TP anticyclone in spring.Additionally,an enhancement of subtropical stationary waves has resulted in significant increases in easterly moisture fluxes over the coastal areas of East Asia,which further promotes more snowfall over eastern TP.
基金the Space Application Center, Ahmedabad (ISRO) for providing field support under “Integrated studies of Himalayan Cryosphere” programthe Glaciology Group, Jawaharlal Nehru University for providing necessary support for this research+1 种基金the grants from SERB (CRG/2020/004877) and MOES/16/19/2017-RDEAS projectsthe support from ISRO/RES/4/690/21-22 project
文摘Glacier inventories serve as critical baseline data for understanding the impacts of climate change on glaciers.The present study maps the outlines of glaciers in the Chandra-Bhaga Basin(western Himalaya)for the years 1993,2000,2010,and 2019 using Landsat Thematic Mapper(TM),Enhanced Thematic Mapper(ETM),and Operational Land Imager(OLI)datasets.A total of 251 glaciers,each having an area above 0.5 km^(2),were identified,which include 216 clean-ice and 35 debris-covered glaciers.Area changes are estimated for three periods:1993-2000,2000-2010,and 2010-2019.The total glacierized area was 996±62 km^(2) in 1993,which decreased to 973±70 km^(2) in 2019.The mean rate of glacier area loss was higher in the recent decade(2010-2019),at 0.036 km^(2),compared to previous decades(0.029 km^(2) in 2000-2010 and 0.025 km^(2) in 1993-2000).Supraglacial debris cover changes are also mapped over the period of 1993 and 2019.It is found that the supraglacial debris cover increased by 14.12±2.54 km^(2)(15.2%)during 1993-2019.Extensive field surveys on Chhota Shigri,Panchi II,Patsio,Hamtah,Mulkila,and Yoche Lungpa glaciers were carried out to validate the glacier outlines and supraglacial debris cover estimated using satellite datasets.Controls of various morphological parameters on retreat were also analyzed.It is observed that small,clean ice,south oriented glaciers,and glaciers with proglacial lakes are losing area at faster rates than other glaciers in the basin.
基金supported by the Central Government to Guide Local Technological Development(23ZYQH0298)the Science and Technology Project of Gansu Province(20JR10RA656,22JR5RA416)the Science and Technology Project of Wuwei City(WW2202YFS006).
文摘Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.
文摘Local populations in Cameroon thrive on forest resources and the flow of ecosystem services they provide are pivotal in sustaining national economy, improving people’s lives, safeguarding biodiversity, and mitigating the impacts of environmental changes. The exploitation of these resources invariably leads to deforestation and forest degradation. This study was designed to evaluate land use land cover change (LULCC) in the Eseka alluvial gold mining district with the aid of Landsat images. In the investigation of forest cover change, four Landsat satellite images for (1990, 2002, 2015 and 2022) were used. Ground-truthing also helped to identify the activities carried out by the local population and to determine agents, drivers and pressures of land use and land cover change. Four main land cover classes namely: forest, agricultural land, settlement/mining camps and water bodies were selected. Between 1990 and 2022, the proportion of forest decreased from 98% to 34% while those of agricultural land and settlement/mining camps increased from 2% to 60% and 0.54% to 6% respectively. Analysis showed ongoing deforestation with forest cover loss of ~98,263 ha in 32 years giving a cover change percentage of 63.94%. Kappa coefficient for the study period ranged from 0.92 to 0.99. Forest cover loss could be attributed to farming activities, wood extraction and alluvial gold mining activities. Economic motives notably the need to increase household income from a frequent demand for farm and wood products in neighbouring towns and the quest for gold were the main drivers of these activities. Hence, this study assesses the impact of human activities from the mining sector on the forest ecosystem in a bid to inform mitigation policies.
基金supported by the National Key Research and Development Program of China(2021YFD1901201-05)the China Agriculture Research System of MOF and MARA(CARS-22)+1 种基金the Special Program for Basic Research and Talent Training of Jiangxi Academy of Agricultural Sciences,China(JXSNKYJCRC202301 and JXSNKYJCRC202325)the National Natural Science Foundation of China(32160766).
文摘The use of cover crops is a promising strategy for influencing the soil microbial consortium,which is essential for the delivery of multiple soil functions(i.e.,soil multifunctionality).Nonetheless,relatively little is known about the role of the soil microbial consortium in mediating soil multifunctionality under different cover crop amendments in dryland Ultisols.Here,we assessed the multifunctionality of soils subjected to four cover crop amendments(control,non-amended treatment;RD,radish monoculture;HV,hairy vetch monoculture;and RDHV,radish-hairy vetch mixture),and we investigated the contributions of soil microbial richness,network complexity,and ecological clusters to soil multifunctionality.Our results demonstrated that cover crops whose chemical composition differed from that of the main plant crop promoted higher multifunctionality,and the radish-hairy vetch mixture rendered the highest enhancement.We obtained evidence that changes in soil microbial richness and network complexity triggered by the cover crops were associated with higher soil multifunctionality.Specifically,specialized microbes in a key ecological cluster(ecological cluster 2)of the soil microbial network were particularly important for maintaining soil multifunctionality.Our results highlight the importance of cover crop-induced variations in functionally important taxa for promoting the soil multifunctionality of dryland Ultisols.
基金the National Natural Science Foundation of China(Grant Nos.41825010 and 42005024).
文摘The East Asian trough(EAT)profoundly influences the East Asian spring climate.In this study,the relationship of the EATs among the three spring months is investigated.Correlation analysis shows that the variation in March EAT is closely related to that of April EAT.Extended empirical orthogonal function(EEOF)analysis also confirms the co-variation of the March and April EATs.The positive/negative EEOF1 features the persistent strengthened/weakened EAT from March to April.Further investigation indicates that the variations in EEOF1 are related to a dipole sea surface temperature(SST)pattern over the North Atlantic and the SST anomaly over the tropical Indian Ocean.The dipole SST pattern over the North Atlantic,with one center east of Newfoundland Island and another east of Bermuda,could trigger a Rossby wave train to influence the EAT in March−April.The SST anomaly over the tropical Indian Ocean can change the Walker circulation and influence the atmospheric circulation over the tropical western Pacific,subsequently impacting the southern part of the EAT in March−April.Besides the SST factors,the Northeast Asian snow cover could change the regional thermal conditions and lead to persistent EAT anomalies from March to April.These three impact factors are generally independent of each other,jointly explaining large variations in the EAT EEOF1.Moreover,the signals of the three factors could be traced back to February,consequently providing a potential prediction source for the EAT variation in March and April.
基金the financial sponsorship from the National Natural Science Foundation of China(Grant No.U20A20320)the area of excellence project(Grant No.AoE/E-603/18)provided by the Research Grants Council of HKSARShenzhen Science and Technology Program(Grant No.KCXFZ20211020163816023).
文摘Extreme rainfall significantly threatens the safety of the landfill cover system,especially under humid climates.This study aims to provide design recommendations for a sustainable landfill cover system consisting of a low-permeability soil layer underlying a two-layer capillary barrier for humid climates.First,the numerical back-analysis was conducted for verification against a series of flume model tests.Then,a parametric study was performed to investigate the effects of inclination angle,particle size and layer thickness on the lateral diversion length(DL)of the three-layer cover system under the 100-year return period rainfall of humid climates.The results show that the water lateral DL of the cover system can be greatly enhanced by increasing the inclination angle from 3°to 18°.Moreover,the bottom layer of the cover system with a coarser d10 was more susceptible to the impact of the heavy rainfall,while this can be alleviated by increasing the thickness of the bottom layer.A dimensionless number,defined as the ratio of thickness and d_(10) of the bottom layer,is proposed for designing lateral diversion of the three-layer cover system under humid climates.To preserve the maximum DL,it is suggested that the proposed dimensionless number should be larger than 95 and 110 for the design of rainfall events with 50-year and 100-year return periods for humid climates,respectively.
文摘In recent decades,the rapid climate warming in polar and alpine regions has been accompanied by an expan-sion of shrub vegetation.However,little is known about how changes in shrub distribution will change as the distribution of tree species and snow cover changes as temperatures rise.In this work,we analyzed the main environmental factors influencing the distribution and structure of Juniperus sibir-ica,the most common shrub species in the Southern Ural Mountains.Using mapping and digital elevation models,we demonstrated that J.sibirica forms a well-defined vegeta-tion belt mainly between 1100 and 1400 m a.s.l.Within this zone,the abundance and cover of J.sibirica are influenced by factors such as rockiness,slope steepness,water regime and tree(Picea obovata)cover.An analysis of data spanning the past 9 years revealed an upward shift in the distribution of J.sibirica with a decrease in its area.The primary limit-ing factors for the distribution of J.sibirica were the removal of snow cover by strong winter winds and competition with trees.As a consequence of climatic changes,the tree line and forest limit have shifted upward,further restricting the distribution of J.sibirica to higher elevations where com-petition for light with trees is reduced and snow cover is sufficiently deep.
文摘Typical row-crop agricultural practices can potentially be harmful to soil health and future sustainability. The use of cover crops (CC) as a mechanism to improve soil health on a wide scale remains underutilized. Soil health remains a major concern for the sustainability of agricultural productivity, therefore, research into CC implementation as a mean to preserve or improve soil health is warranted. The objective of this study was to evaluate the effects of CC on the soils in the eastern Arkansas portion of the Lower Mississippi River Valley (LMRV) over time for various chemical soil parameters, including pH, soil organic matter (SOM), soil elemental contents (i.e., P, K, Ca, Mg, S, Na, Fe, Mn, Zn, Cu, and B), soil respiration, and a generalized soil health score index. Soil pH decreased over time under both CC and no-cover-crop (NCC) treatments, by −0.3 and −0.2, respectively. Soil OM decreased over time under NCC by −0.1%, but did not differ between CC treatments. Soil N availability decreased over time under NCC (−22.6 kg·ha−1), but did not change over time under CC. Soil respiration decreased over time under both CC and NCC, by −76.1 mg·L−1 and −77.3 mg·L−1, respectively, though there was no effect of CC treatment. The Haney soil health score index decreased under CC (−7.0) and NCC (−6.8) without an effect from CC treatment. Results of the study place emphasis on the temporal nature of soil health as influenced by cover crops and their potential to improve soil health.
文摘The abandonment of date palm grove of the former Al-Ahsa Oasis in the eastern region of Saudi Arabia has resulted in the conversion of delicate agricultural area into urban area.The current state of the oasis is influenced by both expansion and degradation factors.Therefore,it is important to study the spatiotemporal variation of vegetation cover for the sustainable management of oasis resources.This study used Landsat satellite images in 1987,2002,and 2021 to monitor the spatiotemporal variation of vegetation cover in the Al-Ahsa Oasis,applied multi-temporal Normalized Difference Vegetation Index(NDVI)data spanning from 1987 to 2021 to assess environmental and spatiotemporal variations that have occurred in the Al-Ahsa Oasis,and investigated the factors influencing these variation.This study reveals that there is a significant improvement in the ecological environment of the oasis during 1987–2021,with increase of NDVI values being higher than 0.10.In 2021,the highest NDVI value is generally above 0.70,while the lowest value remains largely unchanged.However,there is a remarkable increase in NDVI values between 0.20 and 0.30.The area of low NDVI values(0.00–0.20)has remained almost stable,but the region with high NDVI values(above 0.70)expands during 1987–2021.Furthermore,this study finds that in 1987–2002,the increase of vegetation cover is most notable in the northern region of the study area,whereas from 2002 to 2021,the increase of vegetation cover is mainly concentrated in the northern and southern regions of the study area.From 1987 to 2021,NDVI values exhibit the most pronounced variation,with a significant increase in the“green”zone(characterized by NDVI values exceeding 0.40),indicating a substantial enhancement in the ecological environment of the oasis.The NDVI classification is validated through 50 ground validation points in the study area,demonstrating a mean accuracy of 92.00%in the detection of vegetation cover.In general,both the user’s and producer’s accuracies of NDVI classification are extremely high in 1987,2002,and 2021.Finally,this study suggests that environmental authorities should strengthen their overall forestry project arrangements to combat sand encroachment and enhance the ecological environment of the Al-Ahsa Oasis.
文摘The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region.
基金The Joint Advanced Marine and Ecological Studies(JAMES)in the Bay of Bengal and eastern equatorial Indian Ocean supported by the Global Change and Air-Sea InteractionⅡProgram under contract Nos GASI-01-EIND-STwin and GASI-04-WLHY-03Zhejiang Provincial Ten Thousand Talents Plan under contract No.2020R52038.
文摘A high-resolution customized numerical model is used to analyze the water transport in the three major water passages between the Andaman Sea(AS)and the Bay of Bengal,i.e.,the Preparis Channel(PC),the Ten Degree Channel(TDC),and the Great Channel(GC),based on the daily averaged simulation results ranging from 2010 to 2019.Spectral analysis and Empirical Orthogonal Function(EOF)methods are employed to investigate the spatiotemporal variability of the water exchange and controlling mechanisms.The results of model simulation indicate that the net average transports of the PC and GC,as well as their linear trend,are opposite to that of the TDC.This indicates that the PC and the GC are the main inflow channels of the AS,while the TDC is the main outflow channel of the AS.The transport variability is most pronounced at surface levels and between 100 m and 200 m depth,likely affected by monsoons and circulation.A 182.4-d semiannual variability is consistently seen in all three channels,which is also evident in their second principal components.Based on sea level anomalies and EOF analysis results,this is primarily due to equatorial winds during the monsoon transition period,causing eastward movement of Kelvin waves along the AS coast,thereby affecting the spatiotemporal characteristics of the flow in the AS.The first EOF of the PC flow field section shows a split at 100 m deep,likely due to topography.The first EOF of the TDC flow field section is steady but has potent seasonal oscillations in its time series.Meanwhile,the first EOF of the GC flow field section indicates a stable surface inflow,probably influenced by the equatorial Indian Ocean’s eastward current.
文摘Urban expansion of cities has caused changes in land use and land cover(LULC)in addition to transformations in the spatial characteristics of landscape structure.These alterations have generated heat islands and rise of land surface temperature(LST),which consequently have caused a variety of environmental issues and threated the sustainable development of urban areas.Greenbelts are employed as an urban planning containment policy to regulate urban expansion,safeguard natural open spaces,and serve adaptation and mitigation functions.And they are regarded as a powerful measure for enhancing urban environmental sustainability.Despite the fact that,the relation between landscape structure change and variation of LST has been examined thoroughly in many studies,but there is a limitation concerning this relation in semi-arid climate and in greenbelts as well,with the lacking of comprehensive research combing both aspects.Accordingly,this study investigated the spatiotemporal changes of landscape pattern of LULC and their relationship with variation of LST within an inner greenbelt in the semi-arid Erbil City of northern Iraq.The study utilized remote sensing data to retrieve LST,classified LULC,and calculated landscape metrics for analyzing spatial changes during the study period.The results indicated that both composition and configuration of LULC had an impact on the variation of LST in the study area.The Pearson's correlation showed the significant effect of Vegetation 1 type(VH),cultivated land(CU),and bare soil(BS)on LST,as increase of LST was related to the decrease of VH and the increases of CU and BS,while,neither Vegetation 2 type(VL)nor built-up(BU)had any effects.Additionally,the spatial distribution of LULC also exhibited significant effects on LST,as LST was strongly correlated with landscape indices for VH,CU,and BS.However,for BU,only aggregation index metric affected LST,while none of VL metrics had a relation.The study provides insights for landscape planners and policymakers to not only develop more green spaces in greenbelt but also optimize the spatial landscape patterns to reduce the influence of LST on the urban environment,and further promote sustainable development and enhance well-being in the cities with semi-arid climate.
文摘The snow cover over the Taurus Mountains affects water supply, agriculture, and hydropower generation in the region. In this study, we analyzed the monthly Snow Cover Extent(SCE) from November to April in the Central Taurus Mountains(Bolkar, Aladaglar, Tahtali and Binboga Mountains) from 1981 to 2021. Linear trends of snow cover season(November to April) over the last 41 years showed decreases in SCE primarily at lower elevations. The downward trend in SCE was found to be more pronounced and statistically significant for only November and March. SCE in the Central Taurus Mountains has declined about-6.3% per decade for 2500-3000 m in November and about-6.0% per decade for 1000-1500 m and 3000+ m in March over the last 41 years. The loss of SCE has become evident since the 2000s, and the lowest negative anomalies in SCE have been observed in 2014, 2001, and 2007 in the last 41 years, which are consistent with an increase in air temperature and decreased precipitation. SCE was correlated with both mean temperature and precipitation, with temperature having a greater relative importance at all elevated gradients. Results showed that there is a strong linear relationship between SCE and the mean air temperature(r =-0.80) and precipitation(r = 0.44) for all elevated gradients during the snow season. The Arctic Oscillation(AO), the North Atlantic Oscillation(NAO), and the Mediterranean Oscillation(MO) winter indices were used to explain the year-to-year variability in SCE over the Central Taurus Mountains. The results showed that the inter-annual variability observed in the winter SCE on the Central Taurus Mountains was positively correlated with the phases of the winter AO, NAO and MO, especially below 2000 m elevation.
基金National Natural Science Foundation of China(Nos.42371406,42071441,42222106,61976234).
文摘With the increasing number of remote sensing satellites,the diversification of observation modals,and the continuous advancement of artificial intelligence algorithms,historically opportunities have been brought to the applications of earth observation and information retrieval,including climate change monitoring,natural resource investigation,ecological environment protection,and territorial space planning.Over the past decade,artificial intelligence technology represented by deep learning has made significant contributions to the field of Earth observation.Therefore,this review will focus on the bottlenecks and development process of using deep learning methods for land use/land cover mapping of the Earth’s surface.Firstly,it introduces the basic framework of semantic segmentation network models for land use/land cover mapping.Then,we summarize the development of semantic segmentation models in geographical field,focusing on spatial and semantic feature extraction,context relationship perception,multi-scale effects modelling,and the transferability of models under geographical differences.Then,the application of semantic segmentation models in agricultural management,building boundary extraction,single tree segmentation and inter-species classification are reviewed.Finally,we discuss the future development prospects of deep learning technology in the context of remote sensing big data.
基金Science and Technology Research Program of Xiamen Customs(2020XK08).
文摘Based on the biological characteristics of Solenopsis invicta and the structural characteristics of its ant nest,a fast and efficient closed treatment device was developed.Compared with the simple chemical treatment commonly used at present,the developed treatment device(the ant nest control cover)is a fast and efficient method to exterminate S.invicta in 7 d,featured by short course,quick results and good effect.
文摘Background,aim,and scope Solar radiation is the main source of energy for terrestrial ecosystems.Small changes in the absorption of solar radiation at the ground surface can have a significant impact on the climatic environment.Natural and anthropogenic changes in ground cover are important factors affecting the absorption of solar radiation at the ground surface.This phenomenon is particularly pronounced in the mid and high latitudes.In order to quantify the inf luence of surface cover change on the absorption of solar radiation at the surface and to provide a scientific basis for changes in the climatic environment,this paper analyzed ground cover change,ground absorbed solar radiation change and the effect of ground cover change on ground absorbed solar radiation in the Three Northeastern Provinces of China from 2001 to 2018.Materials and methods In this study,the Three Northeastern Provinces of China were used as the study area.Firstly,satellite remote sensing data were used to obtain land cover data and albedo data for Aug.1st of each year in 2001,2005,2010,2015 and 2018.The albedo data were further used to calculate the absorbed solar radiation data at the ground surface.Next,the land cover data were used to count the area changes and shifts of different land classes over the five-year period.The land cover data were overlaid with the surface absorbed solar radiation data to obtain the mean and standard deviation of radiation absorption for different ground classes.The surface absorbed solar radiation data were subtracted to obtain the changes in surface absorbed solar radiation for 2001-2005,2005-2010,2010-2015 and 2015-2018.Ultimately,we used a combination of shifted changes in ground classes and changes in surface absorbed solar radiation data,with unchanged ground classes as a baseline and data such as slope orientation as an aid.We analyzed the effect of ground cover change on surface absorbed solar radiation at regional and pixel point scales.Results(1)The area of woodland and waters in the Three Northeastern Provinces of China increased and then decreased from 2001 to 2018,with an overall increase of 3.96%and 10.51%respectively.Cropland decreased and then increased,with a total decrease of 1.22%.Grassland continued to decrease,with an overall decrease of 19.36%.Building sites increased all the time,with a total increase of 11.08%.The main types of ground cover shifted were woodland,cropland and grassland.The main factors for the change in ground cover were China’s woodland protection policy and the saturation of the total woodland stock.(2)The five ground types absorb solar radiation in the order of waters>building sites>woodland>grassland>cropland.The surface absorption of solar radiation in the Songnen Plain,the Sanjiang Plain and the Songhua River Basin flowing through the Songnen Plain and the Sanjiang Plain varies significantly,by more than 25 W·m^(-2).(3)Changes in the ground cover type affected the absorption of solar radiation energy by the ground surface.There was a clear trend of interconversion between waters and cropland/grassland,cropland and woodland/grassland.In particular,the conversion of waters to both cropland and grassland radiation absorption values decreased significantly,while the opposite increased.The absolute difference between waters and cropland was a maximum of -156.66 W·m^(-2)in 2010-2015,and between waters and grassland was a maximum of 102.36 W·m^(-2) in 2005-2010.The radiative absorption values of woodland and grassland reclamation declined and conversely increased.The absolute difference between woodland and cropland was a maximum of-13.94 W·m^(-2) in 2010-2015 when woodland converted to cropland,and between grassland and cropland was a maximum of 22.36 W·m^(-2) in 2001-2005 when cropland converted to grassland,respectively.Discussion Ground cover changes in the Three Northeastern Provinces of China from 2001-2018 were inextricably linked to natural factors and the inf luence of Chinese national policies.The main inf luencing factors were China’s woodland protection policy,restoration of woodland fire sites,saturation of total woodland,optimization of cropland patterns,sanding of grassland,expansion of water conservancy projects,and urbanization expansion.There were differences in the radiation absorption characteristics of different ground cover types.This was due to the nature of the ground type itself and the regional environment.When ground cover types changed,their ability to absorb solar radiation also changed.The degree of change could be inf luenced by different ground types and different environmental factors.Different spatial scales can also produce variability.We need to consider the effects of ground cover change on the absorption of solar radiation at the surface in an integrated and comprehensive way.Conclusions The Three Northeastern Provinces of China had frequent changes in ground cover from 2001-2018,with the area of grassland decreased by almost 20%.These changes were due to natural environmental change and policies issued by China since the 21st century.The extent to which solar radiation was absorbed by different ground cover types was different,with grassland being the strongest and cropland the least.In the past few years,the Songnen Plain and Sanjiang Plain regions were the most significant changes in the absorption of solar radiation by the ground cover.The change in ground cover type led to a change in solar radiation absorption at the ground surface,with the conversion of waters to cropland or grassland and the conversion of cropland to woodland or grassland showing the greatest change in radiation absorption values,and vice versa.Of these,the absolute difference in the conversion of waters to cropland amounts to-156.66 W·m^(-2) in 2010-2015.The variation in the absorption of solar radiation at the ground surface was related to the characteristics of the ground class itself,but was also limited by the regional environment.Recommendations and perspectives This study showed that surface cover change can affect the absorption of solar radiation at the surface to varying degrees.The unchanged land classes were used as a comparative analysis in this paper,and it was clear from the paper that some of the unchanged land classes showed significant changes in radiation absorption that should be of interest in future studies.
文摘This study focuses on the landscape dynamics of the savannahs’ region in the far north of Togo. Based on a literature review and satellite images analysis using GIS and remote sensing, the study aims to ascertain the effects of anthropogenic threats on the forest coverage of the Savannahs’ Region between 1984 to 2020. The objective is to clarify the dynamics of land use in the region from 1984 to 2000 and from 2000 to 2020. The findings indicate a significant decline in forest coverage within the region from 1984 to 2020, a trend attributed to land use patterns. Dry forests in the Savannah region are largely converted to farmlands, housing, dry savannahs or agroforestry parks, leading to a steady reduction in forest areas.
文摘The greatest environmental disaster in Central Asiathe drying up of the Aral Seahas led to the formation of a new terrain, extending over 2.7 million hectares in Uzbekistan. This newly formed terrain is dynamically developing, with emerging soil formations replacing bottom sediments. This paper analyzes the results of a study on soil formation in the eastern part of the dried-up seabed, focusing on the influence of natural processes occurring there.