This paper presents the applications of Landsat Thematic Mapper (TM) data and Advanced Very High Resolution Radiometer (AVHRR) time series data for winter wheat production estimation in North China Plain. The keytechn...This paper presents the applications of Landsat Thematic Mapper (TM) data and Advanced Very High Resolution Radiometer (AVHRR) time series data for winter wheat production estimation in North China Plain. The keytechniques are described systematically about winter wheat yield estimation system, including automatically extractingwheat area, simulating and monitoring wheat growth situation, building wheat unit yield model of large area and forecasting wheat production. Pattern recognition technique was applied to extract sown area using TM data. Temporal NDVI(Normal Division Vegetation Index) profiles were produced from 8 - 12 times AVHRR data during wheat growth dynamically. A remote sensing yield model for large area was developed based on greenness accumulation, temperature andgreenness change rate. On the basis of the solution of key problems, an operational system for winter wheat yield estimation in North China Plain using remotely sensed data was established and has operated since 1993, which consists of 4 subsystems, namely databases management, image processing, models bank management and production prediction system.The accuracy of wheat production prediction exceeded 96 per cent compared with on the spot measurement.展开更多
We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirect...We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.展开更多
Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discr...Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM.展开更多
The integrated Mission Planning System?(MPS) of Unmanned Surface Vehicle?(USV) refers to the process which can recognize, decide, plan situations and carry out missions, such as human beings, for all incidental or com...The integrated Mission Planning System?(MPS) of Unmanned Surface Vehicle?(USV) refers to the process which can recognize, decide, plan situations and carry out missions, such as human beings, for all incidental or complex events occurring at sea. In the actual operating environment, it is necessary to develop a simulation software environment and analyze, verify it in advance so as to make an appropriate mission plan considering equipment, sensor, fuel, and other available resources. The existing USV mission planning process methodology has several limitations in the analysis of USV missions because the scenario to be tested is limited and autonomy of USV is not considered sufficiently. To overcome these problems, we constructed a process that considers various missions and is more autonomous, and an integrated environment in which to experiment. In this study, we designed a multi-agent based USV Integrated Mission Planning System and modeled each component. In addition, we constructed the USV remote operation S/W based on M&S that user can experiment with the modeled process and verified the usefulness of the developed system through simulations.展开更多
文摘This paper presents the applications of Landsat Thematic Mapper (TM) data and Advanced Very High Resolution Radiometer (AVHRR) time series data for winter wheat production estimation in North China Plain. The keytechniques are described systematically about winter wheat yield estimation system, including automatically extractingwheat area, simulating and monitoring wheat growth situation, building wheat unit yield model of large area and forecasting wheat production. Pattern recognition technique was applied to extract sown area using TM data. Temporal NDVI(Normal Division Vegetation Index) profiles were produced from 8 - 12 times AVHRR data during wheat growth dynamically. A remote sensing yield model for large area was developed based on greenness accumulation, temperature andgreenness change rate. On the basis of the solution of key problems, an operational system for winter wheat yield estimation in North China Plain using remotely sensed data was established and has operated since 1993, which consists of 4 subsystems, namely databases management, image processing, models bank management and production prediction system.The accuracy of wheat production prediction exceeded 96 per cent compared with on the spot measurement.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11074088)
文摘We present two protocols for the controlled remote implementation of quantum operations between three-party high-dimensional systems. Firstly, the controlled teleportation of an arbitrary unitary operation by bidirectional quantum state teleportaion (BQST) with high-dimensional systems is considered. Then, instead of using the BQST method, a protocol for controlled remote implementation of partially unknown operations belonging to some restricted sets in high-dimensional systems is proposed. It is shown that, in these protocols, if and only if the controller would like to help the sender with the remote operations, the controlled remote implementation of quantum operations for high-dimensional systems can be completed.
文摘随着机器人操作系统(robot operating system, ROS)的日益普及,系统也变得更加复杂,这类系统的计算平台正逐渐转变为多核心平台.在ROS中,任务执行的顺序取决于底层任务调度策略和分配给任务的优先级,而最大限度地缩短所有任务的执行时间是并行系统任务调度的一个重要目标.受强化学习在解决各种组合优化问题的最新研究成果的启发,在考虑ROS2多线程执行器的调度机制和执行约束的前提下,提出了一种基于强化学习的任务优先级分配方法,该方法提取了基于有向无环图形式表示的任务集的时间和结构特征,通过策略梯度和蒙特卡洛树搜索(Monte Carlo tree search, MCTS)方法有效地学习ROS2调度策略并给出合理的优先级设置方案,最终达到最小化并行任务的最大完工时间的目的.通过模拟平台环境下随机生成的任务图以评估所提方法,结果表明所提方法明显优于基准方法.作为一种离线分析方法,所提方法可以很容易地扩展到复杂的ROS中,在可接受的时间内找到接近最优的解决方案.
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant Nos06029431and020127)the Natural Science Foundation of the Education Bureau of Guangdong Province,China(Grant No Z02069)
文摘Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM.
文摘The integrated Mission Planning System?(MPS) of Unmanned Surface Vehicle?(USV) refers to the process which can recognize, decide, plan situations and carry out missions, such as human beings, for all incidental or complex events occurring at sea. In the actual operating environment, it is necessary to develop a simulation software environment and analyze, verify it in advance so as to make an appropriate mission plan considering equipment, sensor, fuel, and other available resources. The existing USV mission planning process methodology has several limitations in the analysis of USV missions because the scenario to be tested is limited and autonomy of USV is not considered sufficiently. To overcome these problems, we constructed a process that considers various missions and is more autonomous, and an integrated environment in which to experiment. In this study, we designed a multi-agent based USV Integrated Mission Planning System and modeled each component. In addition, we constructed the USV remote operation S/W based on M&S that user can experiment with the modeled process and verified the usefulness of the developed system through simulations.