在停车场、隧道中GPS、Wi-Fi信号受限的情况下,提出一种基于激光雷达的车辆自主定位方法。采用激光雷达SLAM(simultaneous localization and mapping)算法,通过三维激光雷达点云匹配获取车辆的估计位姿;根据图优化方法和非线性优化方法...在停车场、隧道中GPS、Wi-Fi信号受限的情况下,提出一种基于激光雷达的车辆自主定位方法。采用激光雷达SLAM(simultaneous localization and mapping)算法,通过三维激光雷达点云匹配获取车辆的估计位姿;根据图优化方法和非线性优化方法,对所有位姿进行后端调整,进而得到分辨率可控的环境信息平面栅格地图;基于蒙特卡洛方法,采用粒子滤波器进行实时车辆定位,并提出了粒子采样的一种改善方式,实现了较高精度的激光雷达自主定位。结果表明:粒子滤波器能够有效地实现车辆在停车场等无GPS环境下的定位,定位精度在10 cm之内。展开更多
With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios i...With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios in life are difficult to cope with.To solve the navigation problem of complex dynamic scenes,we present an improved reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic obstacles are present.The method applies the gmapping algorithm as the upper layer input and uses reinforcement learning methods as the output.The algorithm enhances the robots’ability to actively avoid obstacles while retaining the adaptability of traditional methods.展开更多
Traditional cochlear implantation surgery has problems such as high surgical accuracy requirement and large trauma,which cause the difficulty of the operation and the high requirements for doctors,so that only a few d...Traditional cochlear implantation surgery has problems such as high surgical accuracy requirement and large trauma,which cause the difficulty of the operation and the high requirements for doctors,so that only a few doctors can complete the operation independently.However,there is no research on robotic cochlear implantation in China.In response to this problem,a robotic cochlear implantation system is proposed.The robot is controlled by robot operating system(ROS).A simulation environment for the overall surgery is established on the ROS based on the real surgery environment.Through the analysis of the kinematics and the motion planning algorithm of the manipulator,an appropriate motion mode is designed to control the motion of the manipulator,and perform the surgery under the simulation environment.A simple and feasible method of navigation is proposed,and through the model experiment,the feasibility of robotic cochlear implantation surgery is verified.展开更多
In this article,a new trajectory programming system that allows non-expert users to intuitively and efficiently program trajectories for robots is proposed.The system tracks a pen-shaped marker and obtains its positio...In this article,a new trajectory programming system that allows non-expert users to intuitively and efficiently program trajectories for robots is proposed.The system tracks a pen-shaped marker and obtains its position and orientation by processing the point cloud data of the workspace.A graphical user interface,which enables users to save and execute the acquired trajectory immediately after performing trajectory demonstration,is designed and developed for the system.The performance of the developed system is experimentally evaluated by using it to program trajectories for a UR5 robot.The results indicate that compared with traditional kinesthetic programming,the developed system has the potential of significantly reducing the ergonomic stress and workload of users.The system is developed based on the robot operating system,which facilitates its integration with different robot control systems.展开更多
文摘在停车场、隧道中GPS、Wi-Fi信号受限的情况下,提出一种基于激光雷达的车辆自主定位方法。采用激光雷达SLAM(simultaneous localization and mapping)算法,通过三维激光雷达点云匹配获取车辆的估计位姿;根据图优化方法和非线性优化方法,对所有位姿进行后端调整,进而得到分辨率可控的环境信息平面栅格地图;基于蒙特卡洛方法,采用粒子滤波器进行实时车辆定位,并提出了粒子采样的一种改善方式,实现了较高精度的激光雷达自主定位。结果表明:粒子滤波器能够有效地实现车辆在停车场等无GPS环境下的定位,定位精度在10 cm之内。
基金supported in part by the National Key Research and Development Project of China(No.2019YFB2102500)the Natural Science Foundation of Hebei Province(No.F2018201115).
文摘With the continuous development of robotics and artificial intelligence,robots are being increasingly used in various applications.For traditional navigation algorithms,such as Dijkstra and A*,many dynamic scenarios in life are difficult to cope with.To solve the navigation problem of complex dynamic scenes,we present an improved reinforcement-learning-based algorithm for local path planning that allows it to perform well even when more dynamic obstacles are present.The method applies the gmapping algorithm as the upper layer input and uses reinforcement learning methods as the output.The algorithm enhances the robots’ability to actively avoid obstacles while retaining the adaptability of traditional methods.
基金the National Natural Science Foundation of China(Nos.61973211,62133009,51911540479 and M-0221)the Science and Technology Commission of Shanghai Municipality(Nos.21550714200 and 20DZ2220400)+1 种基金the Research Project of Institute of Medical Robotics of Shanghai Jiao Tong Universitythe Interdisciplinary Program of Shanghai Jiao Tong University(Nos.YG2017ZD03 and ZH2018QNB31)。
文摘Traditional cochlear implantation surgery has problems such as high surgical accuracy requirement and large trauma,which cause the difficulty of the operation and the high requirements for doctors,so that only a few doctors can complete the operation independently.However,there is no research on robotic cochlear implantation in China.In response to this problem,a robotic cochlear implantation system is proposed.The robot is controlled by robot operating system(ROS).A simulation environment for the overall surgery is established on the ROS based on the real surgery environment.Through the analysis of the kinematics and the motion planning algorithm of the manipulator,an appropriate motion mode is designed to control the motion of the manipulator,and perform the surgery under the simulation environment.A simple and feasible method of navigation is proposed,and through the model experiment,the feasibility of robotic cochlear implantation surgery is verified.
基金supported by the Major Projects of Guangzhou City of China(Grant Nos.201907010012,201704030091 and 201607010041)the Guangdong Innovative and Entrepreneurial Research Team Program(Grant No.2014ZT05G132)+3 种基金Shenzhen Peacock Plan(Grant No.KQTD2015033117354154)the Major Projects of Guangdong Province of China(Grant No.2015B010919002)the Major Projects of Dongguan City of China(Grant No.2017215102008)the Nansha District International Science and Technology Cooperation Project of Guangzhou City of China(Grant No.2016GJ004).
文摘In this article,a new trajectory programming system that allows non-expert users to intuitively and efficiently program trajectories for robots is proposed.The system tracks a pen-shaped marker and obtains its position and orientation by processing the point cloud data of the workspace.A graphical user interface,which enables users to save and execute the acquired trajectory immediately after performing trajectory demonstration,is designed and developed for the system.The performance of the developed system is experimentally evaluated by using it to program trajectories for a UR5 robot.The results indicate that compared with traditional kinesthetic programming,the developed system has the potential of significantly reducing the ergonomic stress and workload of users.The system is developed based on the robot operating system,which facilitates its integration with different robot control systems.