Calpains are calcium-activated cysteine proteases. There are two main isoforms of calpain that are ubiquitously expressed in tissues, calpain μ or calpain 1, which requires micromolar Ca<sup>2+</sup> for ...Calpains are calcium-activated cysteine proteases. There are two main isoforms of calpain that are ubiquitously expressed in tissues, calpain μ or calpain 1, which requires micromolar Ca<sup>2+</sup> for activation, and calpain or 2, which requires millimolar Ca<sup>2+</sup> for activation. The presence of other calpains is tissue specific. Atherosclerosis (AS) is an important risk factor for cerebral infarction, coronary heart disease and peripheral vascular disease. It was originally thought that AS was caused by impaired lipid metabolism. This research briefly reviewed Calpain Family, the structure and activation mechanism of calpain1, Calpains in the pathogenesis of atherosclerosis, NLRP3 structural characteristics and activation, ROS/NLRP3 inflammasome activation mechanism and ROS/NLRP3 inflammasome in atherosclerosis. The research showed that the Calpain-1 may play an important role in mitochondrial ROS/NLRP3 inflammasome in atherosclerosis.展开更多
目的本研究旨在探讨芒柄花黄素(formononetin,FN)通过干预ROS的生成抑制线粒体动力相关蛋白1(dynamic-related protein 1,DRP1)-NLRP3轴减轻过敏性气道炎症的有关机制。方法为建立过敏性哮喘小鼠模型,50只8周龄的BALB/c小鼠通过卵清蛋白...目的本研究旨在探讨芒柄花黄素(formononetin,FN)通过干预ROS的生成抑制线粒体动力相关蛋白1(dynamic-related protein 1,DRP1)-NLRP3轴减轻过敏性气道炎症的有关机制。方法为建立过敏性哮喘小鼠模型,50只8周龄的BALB/c小鼠通过卵清蛋白(ovalbumin,OVA)诱导后分为对照组、模型组、FN治疗组及地塞米松组。采用HE和Masson染色检测气道炎症和胶原沉积,ELISA测定支气管肺泡灌洗液(BALF)中Th2型细胞因子和超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、丙二醛(MDA)以及IgE水平,DCFH-DA染色评估BEAS-2B细胞中ROS,免疫组织化学和免疫荧光检测肺组织和BEAS-2B细胞中DRP1表达,免疫印迹分析DRP1-NLRP3途径。结果FN治疗可有效改善哮喘小鼠模型的症状,包括减少嗜酸性粒细胞聚集、气道胶原沉积,降低Th2细胞因子和IgE水平,减少ROS和MDA生成,提高SOD和CAT活性,并调节DRP1-NLRP3途径相关蛋白表达,从而缓解炎症。结论FN通过调节DRP1-NLRP3途径改善哮喘气道炎症。展开更多
Inflammation plays an important role in atherosclerosis.Inflammasomes play a crucial role in innate immunity,which mediates the body’s response to various pathogens.Of the different types of inflammasomes,NLRP3 has b...Inflammation plays an important role in atherosclerosis.Inflammasomes play a crucial role in innate immunity,which mediates the body’s response to various pathogens.Of the different types of inflammasomes,NLRP3 has been implicated in atherosclerosis through the production of proinfl ammatory cytokines,IL-1β and IL-18.This review describes the role of the NLRP3 infl ammasome in atherosclerosis and discusses potential therapeutic targets in the infl ammasome pathway.展开更多
Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a ...Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.展开更多
文摘Calpains are calcium-activated cysteine proteases. There are two main isoforms of calpain that are ubiquitously expressed in tissues, calpain μ or calpain 1, which requires micromolar Ca<sup>2+</sup> for activation, and calpain or 2, which requires millimolar Ca<sup>2+</sup> for activation. The presence of other calpains is tissue specific. Atherosclerosis (AS) is an important risk factor for cerebral infarction, coronary heart disease and peripheral vascular disease. It was originally thought that AS was caused by impaired lipid metabolism. This research briefly reviewed Calpain Family, the structure and activation mechanism of calpain1, Calpains in the pathogenesis of atherosclerosis, NLRP3 structural characteristics and activation, ROS/NLRP3 inflammasome activation mechanism and ROS/NLRP3 inflammasome in atherosclerosis. The research showed that the Calpain-1 may play an important role in mitochondrial ROS/NLRP3 inflammasome in atherosclerosis.
文摘目的本研究旨在探讨芒柄花黄素(formononetin,FN)通过干预ROS的生成抑制线粒体动力相关蛋白1(dynamic-related protein 1,DRP1)-NLRP3轴减轻过敏性气道炎症的有关机制。方法为建立过敏性哮喘小鼠模型,50只8周龄的BALB/c小鼠通过卵清蛋白(ovalbumin,OVA)诱导后分为对照组、模型组、FN治疗组及地塞米松组。采用HE和Masson染色检测气道炎症和胶原沉积,ELISA测定支气管肺泡灌洗液(BALF)中Th2型细胞因子和超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、丙二醛(MDA)以及IgE水平,DCFH-DA染色评估BEAS-2B细胞中ROS,免疫组织化学和免疫荧光检测肺组织和BEAS-2B细胞中DRP1表达,免疫印迹分析DRP1-NLRP3途径。结果FN治疗可有效改善哮喘小鼠模型的症状,包括减少嗜酸性粒细胞聚集、气道胶原沉积,降低Th2细胞因子和IgE水平,减少ROS和MDA生成,提高SOD和CAT活性,并调节DRP1-NLRP3途径相关蛋白表达,从而缓解炎症。结论FN通过调节DRP1-NLRP3途径改善哮喘气道炎症。
文摘Inflammation plays an important role in atherosclerosis.Inflammasomes play a crucial role in innate immunity,which mediates the body’s response to various pathogens.Of the different types of inflammasomes,NLRP3 has been implicated in atherosclerosis through the production of proinfl ammatory cytokines,IL-1β and IL-18.This review describes the role of the NLRP3 infl ammasome in atherosclerosis and discusses potential therapeutic targets in the infl ammasome pathway.
基金supported by grants from the National Natural Science Foundation of China, Nos. 81930031 (to JNZ), 81720108015 (to JNZ), 81901525 (to SZ), 82101440 (to DDS), 81801234 (to YZ) and 82071389 (to GLY)the Natural Science Foundation of Tianjin, Nos. 20JCQNJC01270 (to JWW), 20JCQNJC00460 (to GLY), 18JCQNJC81000 (to HTR)+4 种基金Scientific Research Project of Tianjin Education Commission (Natural Science), No. 2018KJ052 (to ZWZ)Tianjin Health and Health Committee Science and Technology Project, No. QN20015 (to JWW)the Science & Technology Development Fund of Tianjin Education Commission for Higher Education, No. 2016YD02 (to YW)Tianjin Key Science and Technology Projects of Innovative Drugs and Medical Devices, No. 19ZXYXSY00070 (to YW)the Clinical Research Fundation of Tianjin Medical University, No. 2018kylc002 (to YW)
文摘Neuroinflammation and the NACHT,LRR,and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury(TBI).Maraviroc,a C-C chemokine receptor type 5 antagonist,has been viewed as a new therapeutic strategy for many neuroinflammatory diseases.We studied the effect of maraviroc on TBI-induced neuroinflammation.A moderate-TBI mouse model was subjected to a controlled cortical impact device.Maraviroc or vehicle was injected intraperitoneally 1 hour after TBI and then once per day for 3 consecutive days.Western blot,immunohistochemistry,and TUNEL(terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling)analyses were performed to evaluate the molecular mechanisms of maraviroc at 3 days post-TBI.Our results suggest that maraviroc administration reduced NACHT,LRR,and PYD domains-containing protein 3 inflammasome activation,modulated microglial polarization from M1 to M2,decreased neutrophil and macrophage infiltration,and inhibited the release of inflammatory factors after TBI.Moreover,maraviroc treatment decreased the activation of neurotoxic reactive astrocytes,which,in turn,exacerbated neuronal cell death.Additionally,we confirmed the neuroprotective effect of maraviroc using the modified neurological severity score,rotarod test,Morris water maze test,and lesion volume measurements.In summary,our findings indicate that maraviroc might be a desirable pharmacotherapeutic strategy for TBI,and C-C chemokine receptor type 5 might be a promising pharmacotherapeutic target to improve recovery after TBI.