We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider th...We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider the propagation of electrons in graphene as relativistic fermion quasi-particles,and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.Next,to solve and analyze the Dirac equation,we obtain the eigenvalues and eigenvectors using the Legendre differential equation.After that,we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal n and spin-orbit k.Then,the values of the energy spectrum for the ground state and the first excited state are calculated,and the wave functions and the corresponding probabilities are plotted in terms of coordinates r.In what follows,we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors K_(x) and K_(y).Finally,the energy bands are plotted in terms of the wave vectors K_(x) and K_(y) with and without the magnetic term.展开更多
By applying a Pekeris-type approximation to the centrifugal term, we study the spin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse potentials. A complicated energy equation and associa...By applying a Pekeris-type approximation to the centrifugal term, we study the spin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse potentials. A complicated energy equation and associated twocomponent spinors with arbitrary spin-orbit coupling quantum number k are presented. The positive-energy bound states are checked numerically in the case of spin symmetry. The relativistic modified Rosen-Morse potential cannot trap a Dirac nucleon in the limiting case a →0.展开更多
In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energ...In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energy levels and the corresponding wave functions expressed in terms of Jacobi polynomial in a closed form for arbitrary l state. We also calculate the oscillator strength for the potential.展开更多
The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into th...The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.展开更多
A new model in nonholonomic mechanics, the Rosen-Edelstein model, has been studied. We prove that the new model is a Lagrange problem in which the action integral ∫t0^t1 Ldt can be made stationary. The theoretical ba...A new model in nonholonomic mechanics, the Rosen-Edelstein model, has been studied. We prove that the new model is a Lagrange problem in which the action integral ∫t0^t1 Ldt can be made stationary. The theoretical basis of nonholonomic mechanics is investigated and discussed. Finally, we give the range of practical applications of the Rosen-Edelstein model.展开更多
文摘We explore the gapped graphene structure in the two-dimensional plane in the presence of the Rosen-Morse potential and an external uniform magnetic field.In order to describe the corresponding structure,we consider the propagation of electrons in graphene as relativistic fermion quasi-particles,and analyze it by the wave functions of two-component spinors with pseudo-spin symmetry using the Dirac equation.Next,to solve and analyze the Dirac equation,we obtain the eigenvalues and eigenvectors using the Legendre differential equation.After that,we obtain the bounded states of energy depending on the coefficients of Rosen-Morse and magnetic potentials in terms of quantum numbers of principal n and spin-orbit k.Then,the values of the energy spectrum for the ground state and the first excited state are calculated,and the wave functions and the corresponding probabilities are plotted in terms of coordinates r.In what follows,we explore the band structure of gapped graphene by the modified dispersion relation and write it in terms of the two-dimensional wave vectors K_(x) and K_(y).Finally,the energy bands are plotted in terms of the wave vectors K_(x) and K_(y) with and without the magnetic term.
文摘By applying a Pekeris-type approximation to the centrifugal term, we study the spin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse potentials. A complicated energy equation and associated twocomponent spinors with arbitrary spin-orbit coupling quantum number k are presented. The positive-energy bound states are checked numerically in the case of spin symmetry. The relativistic modified Rosen-Morse potential cannot trap a Dirac nucleon in the limiting case a →0.
文摘In this paper, we present solutions of the Klein–Gordon equation for the improved Manning–Rosen potential for arbitrary l state in d-dimensions using the supersymmetric shape invariance method. We obtained the energy levels and the corresponding wave functions expressed in terms of Jacobi polynomial in a closed form for arbitrary l state. We also calculate the oscillator strength for the potential.
基金supported by the Higher Education Project(Grant No.698/UN27.11/PN/2015)
文摘The Dirac equation for Eckart potential and trigonometric Manning Rosen potential with exact spin symmetry is obtained using an asymptotic iteration method. The combination of the two potentials is substituted into the Dirac equation, then the variables are separated into radial and angular parts. The Dirac equation is solved by using an asymptotic iteration method that can reduce the second order differential equation into a differential equation with substitution variables of hypergeometry type. The relativistic energy is calculated using Matlab 2011. This study is limited to the case of spin symmetry. With the asymptotic iteration method, the energy spectra of the relativistic equations and equations of orbital quantum number l can be obtained, where both are interrelated between quantum numbers. The energy spectrum is also numerically solved using the Matlab software, where the increase in the radial quantum number nr causes the energy to decrease. The radial part and the angular part of the wave function are defined as hypergeometry functions and visualized with Matlab 2011. The results show that the disturbance of a combination of the Eckart potential and trigonometric Manning Rosen potential can change the radial part and the angular part of the wave function.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10272021 and 10572021) and the Doctoral Programme Foundation of Institution of Higher Education of China (Grant No 20040007022).
文摘A new model in nonholonomic mechanics, the Rosen-Edelstein model, has been studied. We prove that the new model is a Lagrange problem in which the action integral ∫t0^t1 Ldt can be made stationary. The theoretical basis of nonholonomic mechanics is investigated and discussed. Finally, we give the range of practical applications of the Rosen-Edelstein model.