Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts.In the production of hydraulic rotators,dimensional t...Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts.In the production of hydraulic rotators,dimensional tolerances are typically 20μm to obtain designated performance.For castings where intermediate strength and ductility is required,it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations.These are mainly caused by the notoriously varying pearlite content,both at different locations within a part and between parts in the same or different batches.Cooling rate variations due to different wall thickness and position in the molding box,as well as varying amounts of pearlite-stabilizing elements,all contribute to detrimental hardness variations.The obvious remedy is to avoid pearlite formation,and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt%-3.8wt%.The Swedish development in this field 1998 resulted in a national standardization as SS 140725,followed in 2004 by ISO 1083/ JS/500-10.Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts.Improvements include reduction by 75%in hardness variations and increase by 30%in cutting tool life,combined with consistently better mechanical properties.展开更多
Spiral polarization rotators, rotating polarization ellipse axes clockwise or counterclockwise, depending on the azimuth angle in the transverse plane, are considered. It is shown that spiral polarization rotators lea...Spiral polarization rotators, rotating polarization ellipse axes clockwise or counterclockwise, depending on the azimuth angle in the transverse plane, are considered. It is shown that spiral polarization rotators lead to a change in the order of optical vortices with circular polarization. A comparative analysis of spiral rotators of two types (polar and non-polar) is carried out, using a mirror that allows light to pass in the opposite direction through the rotator. The effect of spiral rotators on optical vortices in a resonator is studied. It is shown that spiral rotators can preserve or accumulate changes of the vortex order during the passage of the beam in both directions. The properties of the spiral rotator and the cube-corner reflector with a special phase-correcting coating, as a diffractive polarization-optical element, are compared.展开更多
Multi-photon lithography has emerged as a powerful tool for photonic integration,allowing to complement planar photonic circuits by 3D-printed freeform structures such as waveguides or micro-optical elements.These str...Multi-photon lithography has emerged as a powerful tool for photonic integration,allowing to complement planar photonic circuits by 3D-printed freeform structures such as waveguides or micro-optical elements.These structures can be fabricated with a high precision on the facets of optical devices and enable highly efficient package-level chip-chip connections in photonic assemblies.However,plain light transport and efficient coupling is far from exploiting the full geometrical design freedom offered by 3D laser lithography.Here,we extended the functionality of 3D-printed optical structures to manipulation of optical polarisation states.We demonstrate compact ultra-broadband polarisation beam splitters(PBSs)that can be combined with polarisation rotators and mode-field adapters into a monolithic 3D-printed structure,fabricated directly on the facets of optical devices.In a proof-of-concept experiment,we demonstrate measured polarisation extinction ratios beyond 11 dB over a bandwidth of 350 nm at near-infrared telecommunication wavelengths around 1550 nm.We demonstrate the viability of the device by receiving a 640 Gbit/s dual-polarisation data signal using 16-state quadrature amplitude modulation(16QAM),without any measurable optical-signal-to-noise-ratio penalty compared to a commercial PBS.展开更多
By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By chan...By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By changing the relative phase between the fundamental frequency field and the second one,it is found that the harmonic intensity in the platform region can be significantly modulated.In the higher order,the harmonic intensity can be increased by about one order of magnitude.Through time-frequency analysis,it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase,and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability.In addition,near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields.With the change of the relative phase,the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one.Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity,which provides an opportunity for syntheses of circularly polarized attosecond pulses.展开更多
The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotatio...The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.展开更多
This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-di...This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the b...Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery.展开更多
Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.Ho...Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.展开更多
Nearly 150 km off the coast of Norway,in one of the windiest places on Earth,stands Hywind Tampen,the world’s largest floating wind power farm.Each weighing 8800 t and 190 m tall,with roughly one-third of that height...Nearly 150 km off the coast of Norway,in one of the windiest places on Earth,stands Hywind Tampen,the world’s largest floating wind power farm.Each weighing 8800 t and 190 m tall,with roughly one-third of that height sitting below the waterline,Hywind Tampen’s 11 turbines can generate 94.6 MW(Fig.1)[1].The blades—each 80 m long—travel at a blistering 290 km∙h–1,yet because of their size they complete only about 10 to 15 full rotations per minute.A single rotation provides enough electricity to power an average home for a day.However,Hywind Tampen,which became fully operational in August 2023,will not power houses.Instead,the installation built by energy company Equinor(Stavanger,Norway)will provide 38%of the annual electricity consumed by five nearby offshore oil platforms in the North Sea[1].展开更多
The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on t...The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.展开更多
In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection betw...In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection between plasma and moisture diffusivity processes,as well as thermo-elastic waves.The study examines the photothermoelasticity transport process while considering the impact of moisture diffusivity.By employing Laplace’s transformation technique,we derive the governing equations of the photo-thermo-elastic medium.These equations include the equations for carrier density,elastic waves,moisture transport,heat conduction,and constitutive relationships.Mechanical stresses,thermal conditions,and plasma boundary conditions are used to calculate the fundamental physical parameters in the Laplace domain.By employing numerical techniques,the Laplace transform is inverted to get complete time-domain solutions for the primary physical domains under study.Referencemoisture,thermoelastic,and thermoelectric characteristics are employed in conjunction with a graphical analysis that takes into consideration the effects of applied forces on displacement,moisture concentration,carrier density,stress due to forces,and temperature distribution.展开更多
Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high s...Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high spectral resolution spectrometer has been developed for the charge-exchange recombination spectroscopy measurement on the HL-2A tokamak. The simultaneous measurements of He II(468.57 nm), C VI(529.1 nm), and Dα(656.1 nm accompanied by beam emission spectra) with an acquisition frequency up to 400 Hz are achieved by vertically binning the spectrum from each fiber in experiments. Initial results indicate that the system can provide radial profiles of not only ion temperature and rotation velocity,but also concentration of carbon. For the case of helium, the measurements for the ion temperature and rotation velocity are straightforward but the apparent concentration associated with the observed CX intensity is obviously too high. Modeling of the active He II CX feature including plume contributions needs to be carried out to extract the true helium concentration.The spectrometer could become a prototype for the ITER charge-exchange recombination spectroscopy diagnostic and the pilot experiments, as presented here, demonstrate the possibility of impurity concentrations measurements based on the combined measurement of local beam emission and charge-exchange recombination spectroscopy spectra.展开更多
While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to de...While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.展开更多
The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing th...The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing the first-order shear deformation theory(FSDT)incorporating the relative,centripetal,and Coriolis accelerations alongside the initial hoop tension created by the rotation.The governing equations,compatibility conditions,and boundary conditions are attained using Hamilton’s principle.Utilizing trigonometric functions,an analytical solution is derived in the circumferential direction,and a numerical one is presented in the meridional direction via the differential quadrature method(DQM).The effects of various factors on the critical rotational speeds and forward and backward frequencies of the shell are studied.The present work is the first theoretical work regarding the dynamic analysis of a rotating sandwich conical shell with an auxetic honeycomb core strengthened with a ring support.展开更多
Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of ...Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.展开更多
Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of Ch...Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of China’s food security in the region.However,the crop yields in these rotation systems are 1.25‒14.73%lower in this region than the national averages.Intelligent decision-making with machine learning can analyze the key factors for obtaining better benefits,but it has rarely been used to enhance the probability of obtaining such benefits from rotations in Southwest China.Thus,we used a data-intensive approach to construct an intelligent decision‒making system with machine learning to provide strategies for improving the benefits of rice-rape,rice-wheat,and rice-garlic rotations in Southwest China.The results show that raising the yield and partial fertilizer productivity(PFP)by increasing seed input under high fertilizer application provided the optimal benefits with a 10%probability in the rice-garlic system.Obtaining high yields and greenhouse gas(GHG)emissions by increasing the N application and reducing the K application provided suboptimal benefits with an 8%probability in the rice-rape system.Reducing N and P to enhance PFP and yield provided optimal benefits with the lowest probability(8%)in the rice‒wheat system.Based on the predictive analysis of a random forest model,the optimal benefits were obtained with fertilization regimes by reducing N by 25%and increasing P and K by 8 and 74%,respectively,in the rice-garlic system,reducing N and K by 54 and by 36%,respectively,and increasing P by 38%in rice-rape system,and reducing N by 4%and increasing P and K by 65 and 23%in rice-wheat system.These strategies could be further optimized by 17‒34%for different benefits,and all of these measures can improve the effectiveness of the crop rotation systems to varying degrees.Overall,these findings provide insights into optimal agricultural inputs for higher benefits through an intelligent decision-making system with machine learning analysis in the rice-rape,rice‒wheat,and rice-garlic systems.展开更多
The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of...The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of mass transfer and fluid flow control,relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures.In this study,the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated.The boundaries of the layer are maintained at constant temperatures,while the lateral cylindrical wall is thermally insulated.It is demonstrated that libration results in intense oscillatory fluid motion,which in turn produces a time-averaged flow.For the first time,quantitative measures for the instantaneous velocity field are obtained using the Particle Image Velocimetry technique.It is revealed that the flow has the form of counter-rotating vortices.The vortex circulations sense changes during a libration cycle.An increase in the rotation rate and amplitude of the cavity libration results in an increase in the flow intensity.The heat transfer and time-averaged velocity are examined accordingly as a function of the dimensionless oscillation frequency,and resonant excitation of heat transfer and average oscillation velocity are revealed.The threshold curve for the onset of the averaged convection is identified in the plane of control parameters(dimensionless rotational velocity and pulsation Reynolds number).It is found that an increase in the dimensionless rotational velocity has a stabilizing effect on the onset of convection.展开更多
This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of elect...This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization.展开更多
A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adh...A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.展开更多
文摘Consistent mechanical and machining properties are essential in many applications where ductile irons offer the most cost-effective way to produce structural parts.In the production of hydraulic rotators,dimensional tolerances are typically 20μm to obtain designated performance.For castings where intermediate strength and ductility is required,it is common knowledge that conventional ferritic-pearlitic ductile irons such as ISO 1083/500-7 show large hardness variations.These are mainly caused by the notoriously varying pearlite content,both at different locations within a part and between parts in the same or different batches.Cooling rate variations due to different wall thickness and position in the molding box,as well as varying amounts of pearlite-stabilizing elements,all contribute to detrimental hardness variations.The obvious remedy is to avoid pearlite formation,and instead obtain the necessary mechanical properties by solution strengthening of the ferritic matrix by increasing silicon content to 3.7wt%-3.8wt%.The Swedish development in this field 1998 resulted in a national standardization as SS 140725,followed in 2004 by ISO 1083/ JS/500-10.Indexator AB decided 2005 to specify JS/500-10 for all new ductile iron parts and to convert all existing parts.Improvements include reduction by 75%in hardness variations and increase by 30%in cutting tool life,combined with consistently better mechanical properties.
文摘Spiral polarization rotators, rotating polarization ellipse axes clockwise or counterclockwise, depending on the azimuth angle in the transverse plane, are considered. It is shown that spiral polarization rotators lead to a change in the order of optical vortices with circular polarization. A comparative analysis of spiral rotators of two types (polar and non-polar) is carried out, using a mirror that allows light to pass in the opposite direction through the rotator. The effect of spiral rotators on optical vortices in a resonator is studied. It is shown that spiral rotators can preserve or accumulate changes of the vortex order during the passage of the beam in both directions. The properties of the spiral rotator and the cube-corner reflector with a special phase-correcting coating, as a diffractive polarization-optical element, are compared.
基金supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)in the framework of the Collaborative Research Center(CRC)Wave Phenomena(SFB 1173,project-ID 258734477)under Germany's Excellence Strategy via the Excellence Cluster 3D Matter Made to Order(EXC-2082/1–390761711)+4 种基金by the Bundesministerium für Bildung und Forschung(BMBF)within the projects PRIMA(#13N14630),DiFeMiS(#16ES0948),Open6GHub(#16KISK010)by the European Research Council(ERC Consolidator Grant‘TeraSHAPE’,#773248)by the Photonic Packaging Pilot Line PIXAPP(#731954)by the Alfried Krupp von Bohlen und Halbach Foundation,by the Karlsruhe School of Optics and Photonics(KSOP)by the Karlsruhe Nano-Micro Facility(KNMF).A.N.was supported by the Erasmus Mundus Joint Doctorate Programme Europhotonics(grant number 159224-1-2009-1-FR-ERA MUNDUS-EMJD).
文摘Multi-photon lithography has emerged as a powerful tool for photonic integration,allowing to complement planar photonic circuits by 3D-printed freeform structures such as waveguides or micro-optical elements.These structures can be fabricated with a high precision on the facets of optical devices and enable highly efficient package-level chip-chip connections in photonic assemblies.However,plain light transport and efficient coupling is far from exploiting the full geometrical design freedom offered by 3D laser lithography.Here,we extended the functionality of 3D-printed optical structures to manipulation of optical polarisation states.We demonstrate compact ultra-broadband polarisation beam splitters(PBSs)that can be combined with polarisation rotators and mode-field adapters into a monolithic 3D-printed structure,fabricated directly on the facets of optical devices.In a proof-of-concept experiment,we demonstrate measured polarisation extinction ratios beyond 11 dB over a bandwidth of 350 nm at near-infrared telecommunication wavelengths around 1550 nm.We demonstrate the viability of the device by receiving a 640 Gbit/s dual-polarisation data signal using 16-state quadrature amplitude modulation(16QAM),without any measurable optical-signal-to-noise-ratio penalty compared to a commercial PBS.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant Nos.Y23A040001 and LY21F050001)the National Key Research and Development Program of China(Grant No.2019YFA0307700),the National Natural Science Foundation of China(Grant Nos.12074145,11774219,11975012,12374029,12304378,and 12204214)+2 种基金the Jilin Provincial Research Foundation for Basic Research,China(Grant No.20220101003JC)the Foundation of Education Department of Liaoning Province,China(Grant No.LJKMZ20221435)the National College Students Innovation and Entrepreneurship Training Program(Grant No.202310350062).
文摘By numerically solving the two-dimensional semiconductor Bloch equation,we study the high-order harmonic emission of a monolayer ZnO under the driving of co-rotating two-color circularly polarized laser pulses.By changing the relative phase between the fundamental frequency field and the second one,it is found that the harmonic intensity in the platform region can be significantly modulated.In the higher order,the harmonic intensity can be increased by about one order of magnitude.Through time-frequency analysis,it is demonstrated that the emission trajectory of monolayer ZnO can be controlled by the relative phase,and the harmonic enhancement is caused by the second quantum trajectory with the higher emission probability.In addition,near-circularly polarized harmonics can be generated in the co-rotating two-color circularly polarized fields.With the change of the relative phase,the harmonics in the platform region can be altered from left-handed near-circularly polarization to right-handed one.Our results can obtain high-intensity harmonic radiation with an adjustable ellipticity,which provides an opportunity for syntheses of circularly polarized attosecond pulses.
基金the National Key R&D Program of China(2022YFB3402100)the National Science Fund for Distinguished Young Scholars of China(52025056)+4 种基金the National Natural Science Foundation of China(52305129)the China Postdoctoral Science Foundation(2023M732789)the China Postdoctoral Innovative Talents Support Program(BX20230290)the Open Foundation of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment(2022JXKF JJ01)the Fundamental Research Funds for Central Universities。
文摘The success of deep transfer learning in fault diagnosis is attributed to the collection of high-quality labeled data from the source domain.However,in engineering scenarios,achieving such high-quality label annotation is difficult and expensive.The incorrect label annotation produces two negative effects:1)the complex decision boundary of diagnosis models lowers the generalization performance on the target domain,and2)the distribution of target domain samples becomes misaligned with the false-labeled samples.To overcome these negative effects,this article proposes a solution called the label recovery and trajectory designable network(LRTDN).LRTDN consists of three parts.First,a residual network with dual classifiers is to learn features from cross-domain samples.Second,an annotation check module is constructed to generate a label anomaly indicator that could modify the abnormal labels of false-labeled samples in the source domain.With the training of relabeled samples,the complexity of diagnosis model is reduced via semi-supervised learning.Third,the adaptation trajectories are designed for sample distributions across domains.This ensures that the target domain samples are only adapted with the pure-labeled samples.The LRTDN is verified by two case studies,in which the diagnosis knowledge of bearings is transferred across different working conditions as well as different yet related machines.The results show that LRTDN offers a high diagnosis accuracy even in the presence of incorrect annotation.
基金the funding support from National Natural Science Foundation of China(Grant No.42307243)Henan Province Science and Technology Research Project(Grant No.232102321102)Shanxi Provincial Key Research and Development Project(Grant No.202102090301009).
文摘This paper aims to investigate the role of bi-directional shear in the mechanical behaviour of granular materials and macro-micro relations by conducting experiments and discrete element method(DEM)modelling.The bi-directional shear consists of a static shear consolidation and subsequent shear under constant vertical stress and constant volume conditions.A side wall node loading method is used to exert bi-directional shear of various angles.The results show that bi-directional shear can significantly influence the mechanical behaviour of granular materials.However,the relationship between bidirectional shear and mechanical responses relies on loading conditions,i.e.constant vertical stress or constant volume conditions.The stress states induced by static shear consolidation are affected by loading angles,which are enlarged by subsequent shear,consistent with the relationship between bidirectional shear and principal stresses.It provides evidence for the dissipation of stresses accompanying static liquefaction of granular materials.The presence of bi-directional principal stress rotation(PSR)is demonstrated,which evidences why the bi-directional shear of loading angles with components in two directions results in faster dissipations of stresses with static liquefaction.Contant volume shearing leads to cross-anisotropic stress and fabric at micro-contacts,but constant vertical stress shearing leads to complete anisotropic stress and fabric at micro-contacts.It explains the differentiating relationship between stress-strain responses and fabric anisotropy under these two conditions.Micromechanical signatures such as the slip state of micro-contacts and coordination number are also examined,providing further insights into understanding granular behaviour under bi-directional shear.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金Project supported by the National Science and Technology Major Project of China (No. 2017-V-0009)the National Natural Science Foundation of China (Nos. 12032015 and 12121002)the National Funding Program for Postdoctoral Researchers of China (No. GZC20231586)。
文摘Blade rubbing faults cause detrimental impact on the operation of aeroengines. Most of the existing studies on blade rubbing in the shaft-disk-blade-casing(SDBC) system have overlooked the elastic deformation of the blade, while some only consider the whirl of the rotor, neglecting its spin. To address these limitations, this paper proposes a dynamic model with large rotation for the SDBC system. The model incorporates the spin and whirl of the rotor, enabling the realistic reproduction of multiblade rubbing faults. To verify the accuracy of the SDBC model with large rotation and demonstrate its capability to effectively consider the rotational effects such as the centrifugal stiffening and gyroscopic effects, the natural characteristics and dynamic responses of the proposed model are compared with those obtained from reported research and experimental results. Furthermore, the effects of the rotating speed, contact stiffness,and blade number on the dynamic characteristics of the SDBC system with multi-blade rubbing are investigated. The results indicate that the phase angle between the rotor deflection and the unbalance excitation force increases with the increasing rotating speed,which significantly influences the rubbing penetration of each blade. The natural frequency of the SDBC system with rubbing constrain can be observed in the acceleration response of the casing and the torsional response of the shaft, and the frequency is related to the contact stiffness. Moreover, the vibration amplitude increases significantly with the product of the blade number under rubbing, and the rotating frequency approaches the natural frequency of the SDBC system. The proposed model can provide valuable insight for the fault diagnosis of rubbing in bladed rotating machinery.
基金financially supported by the National Key Technology Research and Development Program of China(2021YFD1901001-08)the Key Scientific and Technological Project of Henan Provincial Education Department,China(232102111119)。
文摘Nitrogen(N)is a key factor in the positive response of cereal crops that follow leguminous crops when compared to gramineous crops in rotations,with the nonrecyclable rhizosphere-derived N playing an important role.However,quantitative assessments of differences in the N derived from rhizodeposition(NdfR)between legumes and gramineous crops are lacking,and comparative studies on their contributions to the subsequent cereals are scarce.In this study,we conducted a meta-analysis of NdfR from leguminous and gramineous crops based on 34 observations published worldwide.In addition,pot experiments were conducted to study the differences in the NdfR amounts,distributions and subsequent effects of two major wheat(Triticum aestivum L.)-preceding crops,corn(Zea mays L.)and soybean(Glycine max L.),by the cotton wick-labelling method in the main wheat-producing areas of China.The meta-analysis results showed that the NdfR of legumes was significantly greater by 138.93%compared to gramineous crops.In our pot experiment,the NdfR values from corn and soybean were 502.32 and 944.12 mg/pot,respectively,and soybean was also significantly higher than corn,accounting for 76.91 and 84.15%of the total belowground nitrogen of the plants,respectively.Moreover,in different soil particle sizes,NdfR was mainly enriched in the large macro-aggregates(>2 mm),followed by the small macro-aggregates(2–0.25 mm).The amount and proportion of NdfR in the macro-aggregates(>0.25 mm)of soybean were 3.48 and 1.66 times higher than those of corn,respectively,indicating the high utilization potential of soybean NdfR.Regarding the N accumulation of subsequent wheat,the contribution of soybean NdfR to wheat was approximately 3 times that of corn,accounting for 8.37 and 4.04%of the total N uptake of wheat,respectively.In conclusion,soybean NdfR is superior to corn in terms of the quantity and distribution ratio of soil macro-aggregates.In future field production,legume NdfR should be included in the nitrogen pool that can be absorbed and utilized by subsequent crops,and the role and potential of leguminous plants as nitrogen source providers in crop rotation systems should be fully utilized.
文摘Nearly 150 km off the coast of Norway,in one of the windiest places on Earth,stands Hywind Tampen,the world’s largest floating wind power farm.Each weighing 8800 t and 190 m tall,with roughly one-third of that height sitting below the waterline,Hywind Tampen’s 11 turbines can generate 94.6 MW(Fig.1)[1].The blades—each 80 m long—travel at a blistering 290 km∙h–1,yet because of their size they complete only about 10 to 15 full rotations per minute.A single rotation provides enough electricity to power an average home for a day.However,Hywind Tampen,which became fully operational in August 2023,will not power houses.Instead,the installation built by energy company Equinor(Stavanger,Norway)will provide 38%of the annual electricity consumed by five nearby offshore oil platforms in the North Sea[1].
基金Project supported by the National Magnetic Confinement Fusion Program of China (Grants Nos.2019YFE03040002 and 2018YFE0301101)the Talent Project of China National Nuclear Corporation,China (Grant No.2022JZYF-01)。
文摘The hybrid scenario,which has good confinement and moderate MHD instabilities,is a proposed operation scenario for international thermonuclear experimental reactor(ITER).In this work,the effect of plasma rotation on the HL-3 hybrid scenario is analyzed with the integrated modeling framework OMFIT.The results show that toroidal rotation has no obvious effect on confinement with a high line averaged density of n_(bar)~(7)×10^(19)m^(-3).In this case,the ion temperature only changes from 4.7 keV to 4.4 keV with the rotation decreasing from 10^(5) rad/s to 10^(3) rad/s,which means that the turbulent heat transport is not dominant.While in the scenarios characterized by lower densities,such as n_(bar)~4×10^(19)m^(-3),turbulent transport becomes dominant in determining heat transport.The ion temperature rises from 3.8 keV to 6.1 keV in the core as the rotation velocity increases from 10^(3) rad/s to 10^(5) rad/s.Despite the ion temperature rising,the rotation velocity does not obviously affect electron temperature or density.Additionally,it is noteworthy that the variation in rotation velocity does not significantly affect the global confinement of plasma in scenarios with low density or with high density.
基金funded by Taif University,Taif,Saudi Arabia(TU-DSPP-2024-172).
文摘In this research,we focus on the free-surface deformation of a one-dimensional elastic semiconductor medium as a function of magnetic field and moisture diffusivity.The problem aims to analyze the interconnection between plasma and moisture diffusivity processes,as well as thermo-elastic waves.The study examines the photothermoelasticity transport process while considering the impact of moisture diffusivity.By employing Laplace’s transformation technique,we derive the governing equations of the photo-thermo-elastic medium.These equations include the equations for carrier density,elastic waves,moisture transport,heat conduction,and constitutive relationships.Mechanical stresses,thermal conditions,and plasma boundary conditions are used to calculate the fundamental physical parameters in the Laplace domain.By employing numerical techniques,the Laplace transform is inverted to get complete time-domain solutions for the primary physical domains under study.Referencemoisture,thermoelastic,and thermoelectric characteristics are employed in conjunction with a graphical analysis that takes into consideration the effects of applied forces on displacement,moisture concentration,carrier density,stress due to forces,and temperature distribution.
基金supported in part by National Natural Science Foundation of China (Nos.12275070, 12205084, 12305236 and 11675050)in part by the National Key Research and Development Program of China (Nos. 2022YFE03180200, 2022YFE03020001 and 2019YFE03010004)Innovation Program of Southwestern Institute of Physics (No. 202301XWCX001)。
文摘Charge-exchange(CX) recombination spectroscopy is a powerful tool monitoring ion temperature and plasma rotation with good temporal and spatial resolutions. A compact, new design for a high-throughput, tri-band high spectral resolution spectrometer has been developed for the charge-exchange recombination spectroscopy measurement on the HL-2A tokamak. The simultaneous measurements of He II(468.57 nm), C VI(529.1 nm), and Dα(656.1 nm accompanied by beam emission spectra) with an acquisition frequency up to 400 Hz are achieved by vertically binning the spectrum from each fiber in experiments. Initial results indicate that the system can provide radial profiles of not only ion temperature and rotation velocity,but also concentration of carbon. For the case of helium, the measurements for the ion temperature and rotation velocity are straightforward but the apparent concentration associated with the observed CX intensity is obviously too high. Modeling of the active He II CX feature including plume contributions needs to be carried out to extract the true helium concentration.The spectrometer could become a prototype for the ITER charge-exchange recombination spectroscopy diagnostic and the pilot experiments, as presented here, demonstrate the possibility of impurity concentrations measurements based on the combined measurement of local beam emission and charge-exchange recombination spectroscopy spectra.
基金supported by the National Natural Science Foundation of China(grant numbers 41874025 and 41474022)。
文摘While the geodetic excitationχ(t)of polar motion p(t)is essential to improve our understanding of global mass redistributions and relative motions with respect to the terrestrial frame,the widely adopted method to deriveχ(t)from p(t)has biases in both amplitude and phase responses.This study has developed a new simple but more accurate method based on the combination of the frequency-and time-domain Liouville's equation(FTLE).The FTLE method has been validated not only with 6-h sampled synthetic excitation series but also with daily and 6-h sampled polar motion measurements as well asχ(t)produced by the interactive webpage tool of the International Earth Rotation and Reference Systems Service(IERS).Numerical comparisons demonstrate thatχ(t)derived from the FTLE method has superior performances in both the time and frequency domains with respect to that obtained from the widely adopted method or the IERS webpage tool,provided that the input p(t)series has a length around or more than 25 years,which presents no practical limitations since the necessary polar motion data are readily available.The FTLE code is provided in the form of Mat Lab function.
文摘The free vibration analysis of a rotating sandwich conical shell with a reentrant auxetic honeycomb core and homogenous isotropic face layers reinforced with a ring support is studied.The shell is modeled utilizing the first-order shear deformation theory(FSDT)incorporating the relative,centripetal,and Coriolis accelerations alongside the initial hoop tension created by the rotation.The governing equations,compatibility conditions,and boundary conditions are attained using Hamilton’s principle.Utilizing trigonometric functions,an analytical solution is derived in the circumferential direction,and a numerical one is presented in the meridional direction via the differential quadrature method(DQM).The effects of various factors on the critical rotational speeds and forward and backward frequencies of the shell are studied.The present work is the first theoretical work regarding the dynamic analysis of a rotating sandwich conical shell with an auxetic honeycomb core strengthened with a ring support.
基金supported by a Grant(2024-MOIS35-005)of Policy-linked Technology Development Program on Natural Disaster Prevention and Mitigation funded by Ministry of Interior and Safety(MOIS,Korea).
文摘Cavitation is a common issue in pumps,causing a decrease in pump head,a fall in volumetric efficiency,and an intensification of outlet flow pulsation.It is one of the main hazards that affect the regular operation of the pump.Research on pump cavitation mainly focuses on mixed flow pumps,jet pumps,external spur gear pumps,etc.However,there are few cavitation studies on external herringbone gear pumps.In addition,pumps with different working principles significantly differ in the flow and complexity of the internal flow field.Therefore,it is urgent to study the cavitation characteristics of external herringbone gear pumps.Compared with experimentalmethods,visual research and cavitation area identification are achieved through computation fluid dynamic(CFD),and changing the boundary conditions and shape of the gear rotor is easier.The simulation yields a head error of only 0.003%under different grid numbers,and the deviation between experimental and simulation results is less than 5%.The study revealed that cavitation causes flow pulsation at the outlet,and the cavitation serious area is mainly distributed in the meshing gap and meshing area.Cavitation can be inhibited by reducing the speed,increasing the inlet pressure,and changing the helix angle can be achieved.For example,when the inlet pressure is 5 bar,the maximumgas volume fraction in themeshing area is less than 50%.These results provide a reference for optimizing the design and finding the optimal design parameters to reduce or eliminate cavitation.
基金supported by the China Postdoctoral Science Foundation(2022M722301)the Sichuan Province Innovative Talent Funding Project for Postdoctoral Fellows,China(BX202207)the Natural Science Foundation of Sichuan Province,China(2023NSFC0014 and 2024NSFSC1225).
文摘Rice‒rape,rice‒wheat and rice‒garlic rotations are common cropping systems in Southwest China,and they have played a significant role in ensuring ecological and economic benefits(EB)and addressing the challenges of China’s food security in the region.However,the crop yields in these rotation systems are 1.25‒14.73%lower in this region than the national averages.Intelligent decision-making with machine learning can analyze the key factors for obtaining better benefits,but it has rarely been used to enhance the probability of obtaining such benefits from rotations in Southwest China.Thus,we used a data-intensive approach to construct an intelligent decision‒making system with machine learning to provide strategies for improving the benefits of rice-rape,rice-wheat,and rice-garlic rotations in Southwest China.The results show that raising the yield and partial fertilizer productivity(PFP)by increasing seed input under high fertilizer application provided the optimal benefits with a 10%probability in the rice-garlic system.Obtaining high yields and greenhouse gas(GHG)emissions by increasing the N application and reducing the K application provided suboptimal benefits with an 8%probability in the rice-rape system.Reducing N and P to enhance PFP and yield provided optimal benefits with the lowest probability(8%)in the rice‒wheat system.Based on the predictive analysis of a random forest model,the optimal benefits were obtained with fertilization regimes by reducing N by 25%and increasing P and K by 8 and 74%,respectively,in the rice-garlic system,reducing N and K by 54 and by 36%,respectively,and increasing P by 38%in rice-rape system,and reducing N by 4%and increasing P and K by 65 and 23%in rice-wheat system.These strategies could be further optimized by 17‒34%for different benefits,and all of these measures can improve the effectiveness of the crop rotation systems to varying degrees.Overall,these findings provide insights into optimal agricultural inputs for higher benefits through an intelligent decision-making system with machine learning analysis in the rice-rape,rice‒wheat,and rice-garlic systems.
基金supported by the Russian Science Foundation(Grant No.22-71-00086).
文摘The study of average convection in a rotating cavity subjected to modulated rotation is an interesting area for the development of both fundamental and applied science.This phenomenon finds application in the field of mass transfer and fluid flow control,relevant examples being crystal growth under reduced gravity and fluid mixing in microfluidic devices for cell cultures.In this study,the averaged flow generated by the oscillating motion of a fluid in a planar layer rotating about a horizontal axis is experimentally investigated.The boundaries of the layer are maintained at constant temperatures,while the lateral cylindrical wall is thermally insulated.It is demonstrated that libration results in intense oscillatory fluid motion,which in turn produces a time-averaged flow.For the first time,quantitative measures for the instantaneous velocity field are obtained using the Particle Image Velocimetry technique.It is revealed that the flow has the form of counter-rotating vortices.The vortex circulations sense changes during a libration cycle.An increase in the rotation rate and amplitude of the cavity libration results in an increase in the flow intensity.The heat transfer and time-averaged velocity are examined accordingly as a function of the dimensionless oscillation frequency,and resonant excitation of heat transfer and average oscillation velocity are revealed.The threshold curve for the onset of the averaged convection is identified in the plane of control parameters(dimensionless rotational velocity and pulsation Reynolds number).It is found that an increase in the dimensionless rotational velocity has a stabilizing effect on the onset of convection.
基金support from the Key Technology Research and Development Program of Shandong Province(Project No.2019GGX102060).
文摘This study investigated the formation mechanism of new grains due to twin–twin intersections in a coarse-grained Mg–6Al–3Sn–2Zn alloy during different strain rates of an isothermal compression.The results of electron backscattered diffraction investigations showed that the activated twins were primarily{1012}tension twins,and 60°<1010>boundaries formed due to twin–twin intersections under different strain rates.Isolated twin variants with 60°<1010>boundaries transformed into new grains through lattice rotations at a low strain rate(0.01 s^(−1)).At a high strain rate(10 s^(−1)),the regions surrounded by subgrain boundaries through high-density dislocation arrangement and the 60°<1010>boundaries transformed into new grains via dynamic recrystallization.
基金the High-Performance Computing Platform of Beijing University of Chemical Technology(BUCT)for supporting this papersupported by the Fundamental Research Funds for the Central Universities(JD2319)+2 种基金the CNOOC Technical Cooperation Project(ZX2022ZCTYF7612)the National Natural Science Foundation of China(51775029,52004014)the Chinese Universities Scientific Fund(XK2020-04)。
文摘A rotating packed bed is a typical chemical process enhancement equipment that can strengthen micromixing and mass transfer.During the operation of the rotating packed bed,the nonreactants and products irregularly adhere to the wire mesh packing in the rotor,thus resulting in an imbalance in the vibration of the rotor,which may cause serious damage to the bearing and material leakage.This study proposes a model prediction for estimating the bearing residual life of a rotating packed bed based on rotor imbalance response analysis.This method is used to determine the influence of the mass on the imbalance in the vibration of the rotor on bearing damage.The major influence on rotor vibration was found to be exerted by the imbalanced mass and its distribution radius,as revealed by the results of orthogonal experiments.Through implementing finite element analysis,the imbalance response curve for the rotating packed bed rotor was obtained,and a correlation among rotor imbalance mass,distribution radius of imbalance mass,and bearing residue life was established via data fitting.The predicted value of the bearing life can be used as the reference basis for an early safety warning of a rotating packed bed to effectively avoid accidents.