期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Relationship between hydrogenation degree and pyrolysis performance of jet fuel
1
作者 Qing Liu Tinghao Jia +2 位作者 Lun Pan Jijun Zou Xiangwen Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期35-42,共8页
Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, t... Understanding the relationship between the chemical composition and pyrolysis performance of endothermic hydrocarbon fuel(EHF) is of great significance for the design and optimization of advanced EHFs. In this work, the effect of deep hydrogenation on the pyrolysis of commercial RP-3 is investigated.Fuels with different hydrogenation degrees were obtained by the partially and completely catalytic hydrogenation and their pyrolysis performances were investigated using an apparatus equipped with an electrically heated tubular reactor. The results show that with the increase of hydrogenation degree, fuel conversion almost remains constant during the pyrolysis process(500-650°C, 4 MPa);however, the heat sink increases slightly, and the anti-coking performance significantly improves, which are highly related to their H/C ratios. Detailed characterisations reveal that the difference of the pyrolysis performance can be ascribed to the content of aromatics and cycloalkanes: the former are prone to initiate secondary reactions to form coking precursors, while the latter could act as the hydrogen donor and release hydrogen, which will terminate the radical propagation reactions and suppress the coke deposition. This work should provide the guidance for upgrading EHFs by modulating the composition of EHFs. 展开更多
关键词 rp-3 fuel PYROLYSIS HYDROGENATION DEPOSITION
下载PDF
Combustion and emissions of RP-3 jet fuel and diesel fuel in a single-cylinder diesel engine
2
作者 Tongbin ZHAO Zhe REN +4 位作者 Kai YANG Tao SUN Lei SHI Zhen HUANG Dong HAN 《Frontiers in Energy》 SCIE CSCD 2023年第5期664-677,共14页
The combustion characteristics and emission behaviors of RP-3 jet fuel were studied and compared to commercial diesel fuel in a single-cylinder compression ignition(CI)engine.Engine operational parameters,including en... The combustion characteristics and emission behaviors of RP-3 jet fuel were studied and compared to commercial diesel fuel in a single-cylinder compression ignition(CI)engine.Engine operational parameters,including engine load(0.6,0.7,and 0.8 MPa indicating the mean effective pressure(IMEP)),the exhaust gas recirculation(EGR)rate(0%,10%,20%,and 30%),and the fuel injection timing(–20,–15,–10,and–5°crank angle(CA)after top dead center(ATDC))were adjusted to evaluate the engine performances of RP-3 jet fuel under changed operation conditions.In comparison to diesel fuel,RP-3 jet fuel shows a retarded heat release and lagged combustion phase,which is more obvious under heavy EGR rate conditions.In addition,the higher premixed combustion fraction of RP-3 jet fuel leads to a higher first-stage heat release peak than diesel fuel under all testing conditions.As a result,RP-3 jet fuel features a longer ignition delay(ID)time,a shorter combustion duration(CD),and an earlier CA50 than diesel fuel.The experimental results manifest that RP-3 jet fuel has a slightly lower indicated thermal efficiency(ITE)compared to diesel fuel,but the ITE difference becomes less noticeable under large EGR rate conditions.Compared with diesel fuel,the nitrogen oxides(NOx)emissions of RP-3 jet fuel are higher while its soot emissions are lower.The NOx emissions of RP-3 can be effectively reduced with the increased EGR rate and delayed injection timing. 展开更多
关键词 rp-3 jet fuel DIESEL engine COMBUSTION EMISSIONS
原文传递
Spray Characteristics of RP-3 Jet Fuel at Non-Evaporating and Evaporating Environments
3
作者 ZHAO Tongbin LYU Delin +2 位作者 DUAN Yaozong HUANG Zhen HAN Dong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期438-447,共10页
Spray experiments of RP-3 jet fuel at non-evaporating and evaporating environments were studied on a constant volume spray chamber,and diffusive back-imaging technique was used to capture the transient spray developme... Spray experiments of RP-3 jet fuel at non-evaporating and evaporating environments were studied on a constant volume spray chamber,and diffusive back-imaging technique was used to capture the transient spray development processes.Spray tip penetration,projected spray area and cone angle of RP-3 jet fuel were derived from the spray development images,and compared to those of diesel fuel.It is observed that non-evaporating sprays of RP-3 jet fuel and diesel fuel do not exhibit significant differences,as their spray penetration distances,projected spray areas and spray cone angles are consistent at most test conditions.The evaporating sprays of RP-3 jet fuel produce shorter liquid-phase penetration distances and lower projected spray areas than those of diesel fuel,and these differences are particularly pronounced at low ambient temperatures.However,fuel effects on the evaporating spray cone angle are insignificant.Further,increased ambient density or ambient temperature shortens the liquid-phase spray penetration distance and reduces the liquid-phase spray area,and these effects are more pronounced for diesel fuel than RP-3 jet fuel. 展开更多
关键词 rp-3 jet fuel SPRAY constant volume chamber EVAPORATING non-evaporating
原文传递
An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates 被引量:3
4
作者 Yaozong DUAN Wang LIU +1 位作者 Zhen HUANG Dong HAN 《Frontiers in Energy》 SCIE CSCD 2021年第2期396-404,共9页
Jet fuel is widely used in air transportation,and sometimes for special vehicles in ground transportation.In the latter case,fuel spray auto-ignition behavior is an important index for engine operation reliability.Sur... Jet fuel is widely used in air transportation,and sometimes for special vehicles in ground transportation.In the latter case,fuel spray auto-ignition behavior is an important index for engine operation reliability.Surrogate fuel is usually used for fundamental combustion study due to the complex composition of practical fuels.As for jet fuels,two-component or three-component surrogate is usually selected to emulate practical fuels.The spray auto-ignition characteristics of RP-3 jet fuel and its three surrogates,the 70%mol n-decane/30%mol 1,2,4-trimethylbenzene blend(Surrogate 1),the 51%mol n-decane/49%mol 1,2,4-trimethylbenzene blend(Surrogate 2),and the 49.8%mol n-dodecane/21.6%mol iso-cetane/28.6%mol toluene blend(Surrogate 3)were studied in a heated constant volume combustion chamber.Surrogate 1 and Surrogate 2 possess the same components,but their blending percentages are different,as the two surrogates were designed to capture the H/C ratio(Surrogate 1)and DCN(Surrogate 2)of RP-3 jet fuel,respectively.Surrogate 3 could emulate more physiochemical properties of RP-3 jet fuel,including molecular weight,H/C ratio and DCN.Experimental results indicate that Surrogate 1 overestimates the auto-ignition propensity of RP-3 jet fuel,whereas Surrogates 2 and 3 show quite similar auto-ignition propensity with RP-3 jet fuel.Therefore,to capture the spray auto-ignition behaviors,DCN is the most important parameter to match when designing the surrogate formulation.However,as the ambient temperature changes,the surrogates matching DCN may still show some differences from the RP-3 jet fuel,e.g.,the first-stage heat release influenced by low-temperature chemistry. 展开更多
关键词 rp-3 jet fuel surrogate spray auto-ignition constant volume combustion chamber
原文传递
耗氧型惰化反应器操作范围及性能分析
5
作者 冯诗愚 谢辉辉 +3 位作者 彭孝天 任童 潘俊 王洋洋 《航空动力学报》 EI CAS CSCD 北大核心 2020年第2期318-324,共7页
通过CFD方法建立了一个耦合化学反应的多孔介质二维拟均相反应器模型,利用此模型研究了耗氧型惰化系统不同工况下反应器的操作范围及工作性能。以RP-3燃油为研究对象,采用Fluent 17.0软件的多孔介质单温度模型,通过UDS(user defined sca... 通过CFD方法建立了一个耦合化学反应的多孔介质二维拟均相反应器模型,利用此模型研究了耗氧型惰化系统不同工况下反应器的操作范围及工作性能。以RP-3燃油为研究对象,采用Fluent 17.0软件的多孔介质单温度模型,通过UDS(user defined scalar)添加固相能量方程,通过源项形式添加化学反应热到固相能能量方程。研究了不同表观气速、RP-3摩尔分数时反应器在不飞温状况下的操作范围,引入耗氧速率作为反应器对惰化系统影响的评价指标,讨论了进口气体温度对反应器操作范围及性能的影响。结果显示:反应器有一定的操作范围,增加反应器进口气体温度会缩小可操作范围;随着进口表观气速增加耗氧速率趋于不变;RP-3摩尔分数、进口气体温度增加都会大幅提升耗氧速率。因此在未来设计耗氧型惰化反应器时应充分考虑这些因素。 展开更多
关键词 催化燃烧 反应器 燃油箱 惰化系统 rp-3航空煤油
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部