期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Recursive Partitioning Analysis Classification and Graded Prognostic Assessment for Non-Small Cell Lung Cancer Patients with Brain Metastasis:A Retrospective Cohort Study 被引量:4
1
作者 Cai-xing Sun Tao Li +4 位作者 Xiao Zheng Ju-fen Cai Xu-li Meng Hong-jian Yang Zheng Wang 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2011年第3期177-182,共6页
Objective:To assess prognostic factors and validate the effectiveness of recursive partitioning analysis (RPA) classes and graded prognostic assessment (GPA) in 290 non-small cell lung cancer (NSCLC) patients w... Objective:To assess prognostic factors and validate the effectiveness of recursive partitioning analysis (RPA) classes and graded prognostic assessment (GPA) in 290 non-small cell lung cancer (NSCLC) patients with brain metastasis (BM).Methods:From Jan 2008 to Dec 2009,the clinical data of 290 NSCLC cases with BM treated with multiple modalities including brain irradiation,systemic chemotherapy and tyrosine kinase inhibitors (TKIs) in two institutes were analyzed.Survival was estimated by Kaplan-Meier method.The differences of survival rates in subgroups were assayed using log-rank test.Multivariate Cox's regression method was used to analyze the impact of prognostic factors on survival.Two prognostic indexes models (RPA and GPA) were validated respectively.Results:All patients were followed up for 1-44 months,the median survival time after brain irradiation and its corresponding 95% confidence interval (95% CI) was 14 (12.3-15.8) months.1-,2-and 3-year survival rates in the whole group were 56.0%,28.3%,and 12.0%,respectively.The survival curves of subgroups,stratified by both RPA and GPA,were significantly different (P0.001).In the multivariate analysis as RPA and GPA entered Cox's regression model,Karnofsky performance status (KPS) ≥ 70,adenocarcinoma subtype,longer administration of TKIs remained their prognostic significance,RPA classes and GPA also appeared in the prognostic model.Conclusion:KPS ≥70,adenocarcinoma subtype,longer treatment of molecular targeted drug,and RPA classes and GPA are the independent prognostic factors affecting the survival rates of NSCLC patients with BM. 展开更多
关键词 Non-small cell lung cancer (NSCLC) Brain metastasis PROGNOSIS recursive partitioning analysis Graded prognostic assessment
下载PDF
Role of Recursive Partitioning Analysis and Graded Prognostic Assessment on Identifying Non-Small Cell Lung Cancer Patients with Brain Metastases Who May Benefit from Postradiation Systemic Therapy 被引量:3
2
作者 Shuai Liu Peng Chen +3 位作者 Yan-Wei Liu Xue-Nan GU Xiao-Guang Qiu Bo Li 《Chinese Medical Journal》 SCIE CAS CSCD 2018年第10期1206-1213,共8页
Background:The role ofpostradiation systemic therapy in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM) was controversial.Thus,we explored the role of Radiation Therapy Oncology Group recur... Background:The role ofpostradiation systemic therapy in non-small cell lung cancer (NSCLC) patients with brain metastasis (BM) was controversial.Thus,we explored the role of Radiation Therapy Oncology Group recursive partitioning analysis (RTOG-RPA) and graded prognostic assessment (GPA) in identifying population who may benefit from postradiation systemic therapy.Methods:The clinical data of NSCLC patients with documented BM from August 2007 to April 2015 of two hospitals were studied retrospectively.Cox regression was used for multivariate analysis.Survival of patients with or without postradiation systemic therapy was compared in subgroups stratified according to RTOG-RPA or GPA.Results:Of 216 included patients,67.1% received stereotactic radiosurgery (SRS),24.1% received whole-brain radiation therapy (WBRT),and 8.8% received both.After radiotherapy,systemic therapy was administered in 58.3% of patients.Multivariate analysis found that postradiation systemic therapy (yes vs.no) (hazard ratio [HR] =0.36 l,95% confidence interval [CI] =0.202-0.648,P =0.001),radiation technique (SRS vs.WBRT) (HR =0.462,95% CI =0.238-0.849,P =0.022),extracranial metastasis (yes vs.no) (HR =3.970,95% CI =1.757-8.970,P =0.001),and Kamofsky performance status (〈70 vs.≥70) (HR =5.338,95% CI =2.829-10.072,P 〈 0.001) were independent factors for survival.Further analysis found that subsequent tyrosine kinase inhibitor (TKI) therapy could significantly reduce the risk of mortality of patients in RTOG-RPA Class IⅡ (HR =0.411,95% CI =0.183-).923,P =0.031) or with a GPA score of 1.5-2.5 (HR =0.420,95% CI =0.182-0.968,P =0.042).However,none of the subgroups stratified according to RTOG-RPA or GPA benefited from the additional conventional chemotherapy.Conclusion:RTOG-RPA and GPA may be useful to identify beneficial populations in NSCLC patients with BM ifTKIs were chosen as postradiation systemic therapy. 展开更多
关键词 CHEMOTHERAPY Non-Small Cell Lung Cancer recursive partitioning analysis Stereotactic Radiosurgery Tyrosine Kinase Inhibitors Whole-Brain Radiation Therapy
原文传递
基于R软件rpart包的分类与回归树应用 被引量:37
3
作者 谢益辉 《统计与信息论坛》 2007年第5期67-70,共4页
对于许多分类和回归问题,二叉树(Binary Tree)提供了有趣而又形象化的方式来研究数据,它主要是按照一定的规则拆分自变量,而完成对因变量的合理分类,进一步可以对未知分类进行预测。在主要介绍递归分割(Recursive Partitioning)和回归树... 对于许多分类和回归问题,二叉树(Binary Tree)提供了有趣而又形象化的方式来研究数据,它主要是按照一定的规则拆分自变量,而完成对因变量的合理分类,进一步可以对未知分类进行预测。在主要介绍递归分割(Recursive Partitioning)和回归树(Regression Tree)在R软件中应用的同时,对一前列腺癌数据使用生存分析和分类与回归树相结合的方法做出分析,并得到了对于疾病诊断和预防较有指导意义的结论。 展开更多
关键词 递归分割 分类与回归树 生存分析 R软件
下载PDF
治疗前泛免疫炎症值预测食管癌术后辅助放疗患者预后的价值
4
作者 江美南 李添翼 +4 位作者 任粤 宋震亚 李梦扬 陈勇 殷旭东 《实用临床医药杂志》 CAS 2024年第17期1-8,共8页
目的 探讨接受术后辅助放疗的食管鳞状细胞癌患者治疗前泛免疫炎症值(PIV)与临床病理特征的相关性,并联合T分期评估其在食管鳞癌患者预后中的价值。方法 回顾性收集2019年1月—2023年1月在扬州大学附属医院放射肿瘤科行术后辅助放疗的... 目的 探讨接受术后辅助放疗的食管鳞状细胞癌患者治疗前泛免疫炎症值(PIV)与临床病理特征的相关性,并联合T分期评估其在食管鳞癌患者预后中的价值。方法 回顾性收集2019年1月—2023年1月在扬州大学附属医院放射肿瘤科行术后辅助放疗的食管鳞癌患者85例的临床资料。绘制受试者工作特征(ROC)曲线获取PIV和其他免疫炎症生物标志物的最佳临界值,依据ROC曲线及决策曲线分析(DCA)比较PIV和其他免疫炎症生物标志物的曲线下面积(AUC)及临床适用性;根据最佳临界值将患者分为PIV高水平组和PIV低水平组,评估PIV水平与食管鳞癌临床病理特征的相关性。生存分析采用Kaplan-Meier法,多因素分析采用Cox比例风险模型,并通过递归分区分析(RPA)建立一个结合PIV和T分期的风险分层模型。结果 根据ROC曲线确定治疗前PIV最佳临界值为187.22,PIV的ROC曲线的AUC(0.679)大于其他4项[全身免疫炎症指数(SII)、血小板与淋巴细胞比值(PLR)、单核细胞与淋巴细胞比值(MLR)、中性粒细胞与淋巴细胞比值(NLR)]免疫炎症生物标志物(0.640、0.583、0.656、0.644)。将85例患者分为PIV低水平组(<187.22)48例和PIV高水平组(≥187.22)37例,PIV的水平高低与肿瘤直径相关(P<0.05)。PIV低水平组3年总生存期(OS)(75.6%与30.6%,P<0.001)和3年无病生存期(DFS)(56.1%与21.0%,P<0.001)高于PIV高水平组;肿瘤直径、T分期和PIV是食管鳞癌患者OS的独立影响因素(P<0.05),T分期和PIV是食管鳞癌患者DFS的独立影响因素(P<0.05)。采用基于T分期和PIV的RPA分层模型建立了一个包含3个风险组的新分期,与单独的T分期或PIV相比,基于RPA生成的模型可进一步提高对预后的预测价值。结论 治疗前PIV有助于预测术后辅助放疗食管鳞癌患者预后,PIV联合T分期可提高预测价值。 展开更多
关键词 食管鳞状细胞癌 术后辅助放疗 临床病理特征 预后 泛免疫炎症值 递归分区分析
下载PDF
RPA分级对脑转移瘤全脑放疗联合三维适形瘤区推量致急性放射损伤的预测意义 被引量:1
5
作者 刘美莲 白雪 +3 位作者 黄辉 蒋伟 何卓凯 蔡锐 《华夏医学》 CAS 2012年第5期670-673,共4页
目的:研究递归分隔分析分级对全脑放疗联合三维适形瘤区推量致急性放射损伤的预测价值。方法:85例脑转移瘤患者分成RPAⅠ、RPAⅡ两组,每组再分A组:全脑普通放射治疗组,照射剂量4 000cGy/20次;B组:全脑普通放射治疗联合三维适形瘤区推量... 目的:研究递归分隔分析分级对全脑放疗联合三维适形瘤区推量致急性放射损伤的预测价值。方法:85例脑转移瘤患者分成RPAⅠ、RPAⅡ两组,每组再分A组:全脑普通放射治疗组,照射剂量4 000cGy/20次;B组:全脑普通放射治疗联合三维适形瘤区推量放疗组,瘤区推量至6 000cGy。比较各亚组间急性放射损伤的差异,评价RPA分级对放疗副反应的预测价值。结果:急性放射损伤RPAⅠA、RPAⅠB两组间差异无统计学意义;RPAⅡA组比RPAⅡB组、RPAⅠB组比RPAⅡB组损伤轻,差异均有统计学意义(P<0.05)。结论:RPA分级对脑转移瘤全脑放疗联合三维适形瘤区推量致急性放射损伤有预测价值。 展开更多
关键词 rpa分级 脑转移瘤 全脑放射治疗 三维适形放射治疗
下载PDF
Diagnosis of building energy consumption in the 2012 CBECS data using heterogeneous effect of energy variables:A recursive partitioning approach
6
作者 Doowon Choi Chul Kim 《Building Simulation》 SCIE EI CSCD 2021年第6期1737-1755,共19页
Numerous previous literature has attempted to apply machine learning techniques to analyze relationships between energy variables in energy consumption.However,most machine learning methods are primarily used for pred... Numerous previous literature has attempted to apply machine learning techniques to analyze relationships between energy variables in energy consumption.However,most machine learning methods are primarily used for prediction through complicated learning processes at the expense of interpretability.Those methods have difficulties in evaluating the effect of energy variables on energy consumption and especially capturing their heterogeneous relationship.Therefore,to identify the energy consumption of the heterogeneous relationships in actual buildings,this study applies the MOdel-Based recursive partitioning(MOB)algorithm to the 2012 CBECS survey data,which would offer representative information about actual commercial building characteristics and energy consumption.With resultant tree-structured subgroups,the MOB tree reveals the heterogeneous effect of energy variables and mutual influences on building energy consumptions.The results of this study would provide insights for architects and engineers to develop energy conservative design and retrofit in U.S.office buildings. 展开更多
关键词 CBECS commercial building decision tree analysis MOdel-Based recursive partitioning(MOB)algorithm recursive partitioning subgroup identification
原文传递
66例脑转移瘤患者的生存因素分析 被引量:1
7
作者 刘美莲 白雪 +2 位作者 黄辉 何卓凯 蔡锐 《华夏医学》 CAS 2012年第4期474-477,共4页
目的:探讨脑转移瘤患者放射治疗的疗效。方法:分析66例脑转移瘤患者的临床资料。按性别、年龄、治疗方式、递归分隔分析(Recursive partitioning analysis,RPA)分级、原发肿瘤病理类型、脑转移瘤数目等分成不同类别,应用SPSS软件,进行... 目的:探讨脑转移瘤患者放射治疗的疗效。方法:分析66例脑转移瘤患者的临床资料。按性别、年龄、治疗方式、递归分隔分析(Recursive partitioning analysis,RPA)分级、原发肿瘤病理类型、脑转移瘤数目等分成不同类别,应用SPSS软件,进行生存分析,筛选可能对预后有影响的指标。结果:单因素分析显示,生存期的提高与RPA分级Ⅰ级、年龄小于65岁、仅有单个脑转移瘤这3项因素显著相关,而与性别、放疗方式、病理类型无明显相关;应用COX比例风险回归模型,进行多因素生存分析,显示RPA分级和转移瘤数目是独立的生存预后因素;RPA分级结合不同放疗方式分组的单因素分析显示,各亚组的中位生存期有显著差异(P<0.01),对RPA分级相同的患者,全脑放疗联合三维适形瘤区推量可以获得更长的中位生存期。结论:RPA分级和转移瘤数目是接受放疗脑转移瘤患者的独立生存预后因素,全脑放疗联合三维适形瘤区推量可以延长生存时间。 展开更多
关键词 rpa分级 脑转移瘤 全脑放射治疗 三维适形放射治疗
下载PDF
Forecasting Flowering and Maturity Times of Barley Using Six Machine Learning Algorithms 被引量:1
8
作者 Mingyuan Cheng Mingchu Zhang 《Journal of Agricultural Science and Technology(B)》 2019年第6期373-391,共19页
Interior Alaska has a short growing season of 110 d.The knowledge of timings of crop flowering and maturity will provide the information for the agricultural decision making.In this study,six machine learning algorith... Interior Alaska has a short growing season of 110 d.The knowledge of timings of crop flowering and maturity will provide the information for the agricultural decision making.In this study,six machine learning algorithms,namely Linear Discriminant Analysis(LDA),Support Vector Machines(SVMs),k-nearest neighbor(kNN),Naïve Bayes(NB),Recursive Partitioning and Regression Trees(RPART),and Random Forest(RF),were selected to forecast the timings of barley flowering and maturity based on the Alaska Crop Datasets and climate data from 1991 to 2016 in Fairbanks,Alaska.Among 32 models fit to forecast flowering time,two from LDA,12 from SVMs,four from NB,three from RF outperformed models from other algorithms with the highest accuracy.Models from kNN performed worst to forecast flowering time.Among 32 models fit to forecast maturity time,two models from LDA outperformed the models from other algorithms.Models from kNN and RPART performed worst to forecast maturity time.Models from machine learning methods also provided a variable importance explanation.In this study,four out of six algorithms gave the same variable importance order.Sowing date was the most important variable to forecast flowering but less important variable to forecast maturity.The daily maximum temperature may be more important than daily minimum temperature to fit flowering models while daily minimum temperature may be more important than daily maximum temperature to fit maturity models.The results indicate that models from machine learning provide a promising technique in forecasting the timings of flowering and maturity of barley. 展开更多
关键词 Machine learning flowering and maturity Linear Discriminant analysis Support Vector Machines k-nearest neighbor Naïve Bayes recursive partitioning regression trees Random Forest
下载PDF
胸段食管鳞癌隆突下淋巴结转移的风险分层
9
作者 李强明 张国庆 +4 位作者 侯志超 刘旭东 刘天阳 赵松 李向楠 《食管疾病》 2020年第3期214-218,共5页
目的探讨胸段食管鳞癌隆突下淋巴结转移的危险因素,并建立隆突下淋巴结转移的预测模型及转移概率的风险分层。方法回顾性分析郑州大学第一附属医院胸外科2015年3月至2019年4月625例胸段食管鳞癌患者的临床病理资料。采用单因素和多因素... 目的探讨胸段食管鳞癌隆突下淋巴结转移的危险因素,并建立隆突下淋巴结转移的预测模型及转移概率的风险分层。方法回顾性分析郑州大学第一附属医院胸外科2015年3月至2019年4月625例胸段食管鳞癌患者的临床病理资料。采用单因素和多因素分析胸段食管鳞癌隆突下淋巴结转移的危险因素,并基于独立危险因素采用Rstudio软件包建立隆突下淋巴结转移的nomogram模型。然后根据nomogram模型对隆突下淋巴结转移预测的总分进行"递归分割分析(RPA)",将患者进行风险分层。结果625例患者中有73例出现隆突下淋巴结转移,转移率为11.68%。单因素分析显示,肿瘤位置、肿瘤长度、肿瘤分化程度、病理T分期、神经侵犯、脉管侵犯和胸部淋巴结阳性(不计入隆突下淋巴结,下同)是胸段食管鳞癌隆突下淋巴结转移的危险因素,差异有统计学意义(均P<0.05);多因素Logistic回归分析显示,肿瘤长度、病理T分期和胸部淋巴结阳性是胸段食管鳞癌隆突下淋巴结转移的独立危险因素(均P<0.05)。基于肿瘤长度、病理T分期和胸部淋巴结转移数目建立了隆突下淋巴结转移的nomogram模型,模型c-指数为0.814。进一步,RPA依据隆突下淋巴结转移概率的高低将患者分为4个风险亚组。低危组:胸部阳性淋巴结总数0~2枚;中低危组:胸部阳性淋巴结总数3~4枚+肿瘤长度<5 cm;中高危组:胸部阳性淋巴结总数3~4枚+肿瘤长度≥5 cm;高危组:胸部阳性淋巴结总数≥5枚。各风险亚组隆突下淋巴结转移概率分别为8.22%、34.78%、53.85%和64.71%。结论肿瘤长度、病理T分期和胸部淋巴结阳性是胸段食管鳞癌隆突下淋巴结转移的独立危险因素。本研究建立的胸段食管鳞癌隆突下淋巴结转移的预测模型和风险分层,可以为胸外科医师行隆突下淋巴结清扫提供理论依据。 展开更多
关键词 食管癌 隆突下淋巴结转移 危险因素 递归分割
下载PDF
Vasoactive-Ventilation-Renal Score Predicts Cardiac Care Unit Length of Stay in Patients Undergoing Re-Entry Sternotomy: A Derivation Study
10
作者 Vicki L. Mahan Monika Gupta +3 位作者 Stephen Aronoff David Bruni Randy M. Stevens Achintya Moulick 《World Journal of Cardiovascular Surgery》 2018年第1期7-21,共15页
Background: The vasoactive-ventilation-renal (VVR) score includes pulmonary and renal dysfunctions not previously addressed by the vasoactive inotrope score (VIS) and may be a better predictor of cardiac care unit (CC... Background: The vasoactive-ventilation-renal (VVR) score includes pulmonary and renal dysfunctions not previously addressed by the vasoactive inotrope score (VIS) and may be a better predictor of cardiac care unit (CCU) length of stay (LOS) in patients undergoing re-entry sternotomy (defined as no earlier than 30 days after previous sternotomy) for congenital heart disease (CHD). Methods: Patients undergoing re-entry sternotomy for CHD from August 1, 2009 to June 30, 2016 were studied retrospectively. A total of 96 patients undergoing 133 re-entry procedures were identified. VVR scores were calculated on CCU admission post-procedure (at 0 hour), 24-hour, and 48-hour after admission to the CCU. The response variable was CCU LOS.? Recursive partition analysis identified variables predicting LOS. Results: 133 re-entry sternotomies in 96 patients made up the samples of the database;11 samples were removed due to incomplete data or placement on ECMO. Of the initial 25 features, 5 were removed for near zero variance and 3 categorical features were removed for non-information. Covariance analysis did not demonstrate any significant correlation amongst the remaining features. Initial recursive tree regression using ANOVA, cross validation and conditional predictive p-value (cp) = 0.01 produced 3 trees. The tree with lowest cross validation error was selected. The resulting 2 split trees with ventilator days less than 20 days and VVR score at 48 hours greater than 23 identified three CCU LOS groups with mean CCU LOS of 77.6, 55.1, and 9.5 days. Conclusions: Recursive partition analysis identified ventilator days greater than 20 days and the sub-population VVR at 48 hours as predictive of CCU LOS in patients undergoing re-entry sternotomy for CHD. 展开更多
关键词 RE-ENTRY STERNOTOMY Vasoactive-Ventilation-Renal SCORE VVR SCORE recursive partitioning analysis CONGENITAL Heart Disease (CHD)
下载PDF
肺腺癌纵隔淋巴结转移风险分层的预测模型 被引量:4
11
作者 刘天阳 闫思颖 +3 位作者 李强明 叶飞 赵松 李向楠 《中华实用诊断与治疗杂志》 2020年第12期1259-1262,共4页
目的探讨肺腺癌纵隔淋巴结转移的影响因素,并建立肺腺癌纵隔淋巴结转移的预测模型。方法245例肺腺癌患者,根据是否发生纵隔淋巴结转移分为转移组66例和未转移组179例,比较2组临床资料,采用多因素logistic回归分析肺腺癌患者发生纵隔淋... 目的探讨肺腺癌纵隔淋巴结转移的影响因素,并建立肺腺癌纵隔淋巴结转移的预测模型。方法245例肺腺癌患者,根据是否发生纵隔淋巴结转移分为转移组66例和未转移组179例,比较2组临床资料,采用多因素logistic回归分析肺腺癌患者发生纵隔淋巴结转移的影响因素。以肺腺癌患者发生纵隔淋巴结转移的影响因素构建列线图预测模型,绘制其校正曲线和决策曲线,预测模型的预测性能采用c-指数评估。根据列线图模型对肺腺癌纵隔淋巴结转移预测的总分进一步采用"递归分割分析方法"建立决策树模型。结果转移组年龄<60岁、肿瘤直径>3 cm、肿瘤组织学亚型乳头型和实体型、肿瘤低分化比率高于未转移组(P<0.05);年龄、肿瘤直径和肿瘤分化程度是肺腺癌患者发生纵隔淋巴结转移的影响因素(OR=0.366,95%CI:0.189~0.706,P=0.003;OR=1.416,95%CI:1.059~1.893,P=0.019;OR=5.151,95%CI:2.720~9.755,P<0.001)。以年龄、肿瘤直径和肿瘤分化程度构建肺腺癌纵隔淋巴结转移列线图预测模型,c-指数为0.819。校正曲线显示列线图预测模型预测肺腺癌纵隔淋巴结转移概率与实际淋巴结转移概率吻合度较高。决策曲线显示肺腺癌纵隔淋巴结转移概率阈值为0.001~0.713时,应用该列线图预测模型有较好收益。递归分割分析依据转移概率将纵隔淋巴结转移概率分为4个风险亚组,低危组为肿瘤高/中分化,中低危组为肿瘤低分化+肿瘤直径≤4.0 cm+年龄≥60岁,中高危组为肿瘤低分化+肿瘤直径≤4.0 cm+年龄<60岁,高危组为肿瘤低分化+肿瘤直径>4.0 cm;4个风险亚组纵隔淋巴结转移概率分别为15%、39%、58%和77%。结论年龄、肿瘤直径和肿瘤分化程度是肺腺癌纵隔淋巴结转移的的影响因素,建立肺腺癌纵隔淋巴结转移的预测模型可为临床行纵隔淋巴结清扫提供理论依据。 展开更多
关键词 肺腺癌 纵隔淋巴结转移 影响因素 递归分割
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部