To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When a...To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.展开更多
The Congolese population is organised into households, which are thus headed by a chief who ensures the social well-being, development and integration into working life of the individuals in his charge. This study exa...The Congolese population is organised into households, which are thus headed by a chief who ensures the social well-being, development and integration into working life of the individuals in his charge. This study examines the functional principles of new housing design as an instrument for transforming the (current) failing economy into a strong and resilient one. Accordingly, a literature review of the practice of designing and building housing in human settlements in the Congo revealed the state of the art on this subject. An analysis of the existing housing stock from a demographic, social and economic point of view made it possible to identify the most common household sizes and numbers, as well as the lifestyle processes that determine the need for developed space. To this end, the experimental method was used to propose configuration plans for various new types of dwelling. To this end, the study highlighted the link between people’s standard of living and the effectiveness of their involvement in the local economy. To achieve the aims of the National Development Plan (NDP), particular attention must be paid to solving the housing problem. The existing housing stock actively contributes to the problems associated with unemployment and insecurity. Functional principles for the design of new types of housing have been developed. Four model types are proposed in line with the demographic structure of the population, their socio-economic characteristics and their lifestyle.展开更多
This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines...This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.展开更多
Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during ...Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.展开更多
At present,it is impossible to deny the existence of artificial intelligence in various areas of social life,understood as the simulation of expert human intelligence from computer processes that involve learning,reas...At present,it is impossible to deny the existence of artificial intelligence in various areas of social life,understood as the simulation of expert human intelligence from computer processes that involve learning,reasoning,and self-correction,its benefits to the medical field,in particular,are innumerable,but their incorporation into health systems has been gradual for many reasons.According to the above,this research analyzed artificial intelligence based on resilient leadership in the health sector,for which qualitative research was carried out with a documentary-bibliographic design with printed and electronic documentary sources with theoretical contributions fromÁvila,Mayer,and Quesada[1],Morgan[2],Villa[3],and Finol[4],among others.It is highlighted that resilient leadership has become a strategic factor in all organizations,since times of uncertainty and changes lead institutions to properly manage the incorporation of technologies specifically AI,achieving in this way that the centers and professionals in the field of health assume the needs of the contexts and the innovations of the same.It is concluded that resilient leadership will allow artificial intelligence in the health sector to generate higher levels of learning and adaptability to the transformations that are necessary,whose resistance would make its application difficult and in the long run it will leave behind professionals who refuse to assume the contributions of these innovative techniques in medical practice.展开更多
Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumpti...Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.展开更多
This paper studies the countermeasure design problems of distributed resilient time-varying formation-tracking control for multi-UAV systems with single-way communications against composite attacks,including denial-of...This paper studies the countermeasure design problems of distributed resilient time-varying formation-tracking control for multi-UAV systems with single-way communications against composite attacks,including denial-of-services(DoS)attacks,false-data injection attacks,camouflage attacks,and actuation attacks(AAs).Inspired by the concept of digital twin,a new two-layered protocol equipped with a safe and private twin layer(TL)is proposed,which decouples the above problems into the defense scheme against DoS attacks on the TL and the defense scheme against AAs on the cyber-physical layer.First,a topologyrepairing strategy against frequency-constrained DoS attacks is implemented via a Zeno-free event-triggered estimation scheme,which saves communication resources considerably.The upper bound of the reaction time needed to launch the repaired topology after the occurrence of DoS attacks is calculated.Second,a decentralized adaptive and chattering-relief controller against potentially unbounded AAs is designed.Moreover,this novel adaptive controller can achieve uniformly ultimately bounded convergence,whose error bound can be given explicitly.The practicability and validity of this new two-layered protocol are shown via a simulation example and a UAV swarm experiment equipped with both Ultra-WideBand and WiFi communication channels.展开更多
Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten ...Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten the coexistence of oasis-desert ecosystems is still scarce, especially under the compounding effects of human activities and climatic changes. Here, we assessed the impacts of irrigated agriculture on hydrological regimes in oasisdesert systems, investigated the spatio-temporal variations of soil salinization in irrigated cropland, and evaluated the implications of the interplays of soil salinization and groundwater degradation on the coexistence of oasis-desert ecosystems in northwestern China, based on meaningful modelling approaches and comprehensive measurements over 1995–2020. The results showed that the irrigation return flow coefficient decreased sharply from 0.21 ± 0.09 in the traditional irrigation period to 0.09 ± 0.01 in the water-saving irrigation period. The continuous drop in groundwater tables and significant degradation of groundwater quality are occurring throughout this watershed. The eco-environmental flows are reaching to their limit with watershed closures(i.e.,the drainage from the oasis region into the desert region is being weakened or even eliminated), although these progressions were largely hidden by regional precipitation and streamflow variability. The process of salt migration and accumulation across different landscapes in oasis-desert system is being reshaped, and soil salinization in water-saving agricultural irrigated lands is accelerating with a regional average annual growth rate of18%. The vegetation in this watershed is degrading, and anthropogenic disturbance accelerates this trend. Our results highlight that environmental stress adaptation strategies must account for resilience maintenance to avoid accelerating catastrophic transitions in oasis-desert ecosystems. Determining the optimal oasis scales and formulating the best irrigation management plans are effective and resilient decision-making ways to maintain the coexistence relationship of oasis-desert ecosystem in drylands.展开更多
Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are eas...Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.展开更多
Any single Positioning,Navigation and Timing(PNT)technology has its vulnerability and limits,even the powerful Global Navigation Satellite System(GNSS)is no exception.To provide continuous and reliable PNT information...Any single Positioning,Navigation and Timing(PNT)technology has its vulnerability and limits,even the powerful Global Navigation Satellite System(GNSS)is no exception.To provide continuous and reliable PNT information to users,the theory and technique of comprehensive PNT information system and resilient PNT application system have attracted great attention from Chinese scholars.We try to summarize the progress and development of the synthetic PNT system,including the proposal,the modification and the improvement of the comprehensive PNT,as well as the follow-up resilient PNT.The frame of China’s comprehensive PNT system consisted of comprehensive PNT infrastructure and comprehensive PNT application system is initially described;the achievements on some main PNT technologies are introduced;the conceptual models of resilient PNT are given;besides,existing researches on resilient function models and stochastic models are summarized according to different user scenarios.展开更多
In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.Howe...In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results.展开更多
基金supported by the Technology Project of State Grid Jiangsu Electric Power Co.,Ltd.,China (J2022160,Research on Key Technologies of Distributed Power Dispatching Control for Resilience Improvement of Distribution Networks).
文摘To improve the resilience of a distribution system against extreme weather,a fuel-based distributed generator(DG)allocation model is proposed in this study.In this model,the DGs are placed at the planning stage.When an extreme event occurs,the controllable generators form temporary microgrids(MGs)to restore the load maximally.Simultaneously,a demand response program(DRP)mitigates the imbalance between the power supply and demand during extreme events.To cope with the fault uncertainty,a robust optimization(RO)method is applied to reduce the long-term investment and short-term operation costs.The optimization is formulated as a tri-level defenderattacker-defender(DAD)framework.At the first level,decision-makers work out the DG allocation scheme;at the second level,the attacker finds the optimal attack strategy with maximum damage;and at the third level,restoration measures,namely distribution network reconfiguration(DNR)and demand response are performed.The problem is solved by the nested column and constraint generation(NC&CG)method and the model is validated using an IEEE 33-node system.Case studies validate the effectiveness and superiority of the proposed model according to the enhanced resilience and reduced cost.
文摘The Congolese population is organised into households, which are thus headed by a chief who ensures the social well-being, development and integration into working life of the individuals in his charge. This study examines the functional principles of new housing design as an instrument for transforming the (current) failing economy into a strong and resilient one. Accordingly, a literature review of the practice of designing and building housing in human settlements in the Congo revealed the state of the art on this subject. An analysis of the existing housing stock from a demographic, social and economic point of view made it possible to identify the most common household sizes and numbers, as well as the lifestyle processes that determine the need for developed space. To this end, the experimental method was used to propose configuration plans for various new types of dwelling. To this end, the study highlighted the link between people’s standard of living and the effectiveness of their involvement in the local economy. To achieve the aims of the National Development Plan (NDP), particular attention must be paid to solving the housing problem. The existing housing stock actively contributes to the problems associated with unemployment and insecurity. Functional principles for the design of new types of housing have been developed. Four model types are proposed in line with the demographic structure of the population, their socio-economic characteristics and their lifestyle.
文摘This study aims to quantify the susceptibility of granular materials used in pavements to changes in moisture content and propose a correlation model to incorporate this susceptibility into seasonal analyses.The fines content and the percentage of fractured coarse aggregates were identified as direct indicators of the resilient modulus susceptibility to changes in water content.The results showed that the percentage of fractured coarse aggregates particles(FR)has a more significant impact on the resilient modulus(Er)of crushed granular materials used in pavement construction than the combined indicator of the fines content and sample volumetrics(nf).Crushed granular materials with a higher percentage of fractured coarse aggregates are relatively insensitive to changes in the degree of saturation,but become more sensitive as the fine fraction porosity decreases.An adjusted model was proposed based on the existing formulation,but considers a complex parameter to describe and adjust the sensitivity of base granular materials to variations in moisture content with respect to fabrication charac-teristics,fines content and volumetric properties.The model shows that the variation of Er values is below10%for fully crushed granular materials.However,it reaches approximately±12%for materials with 75%of crushed coarse aggregates andþ40%and-25%for materials with FR=50%.This model could help select good ag-gregates characteristics and adjust grain-size distribution for environments where significant moisture content variations can occur in the pavement system,such as in the Province of Quebec(Canada).As it is based on pa-rameters that can be easily determined or estimated,it also represents a valuable tool for detailed design and analysis that can consider material characteristics.
基金National Key Research and Development Program of China under Grant No.2018YFC0705602。
文摘Frame and rocking wall(FRW)structures have excellent resilient performance during earthquakes.However,the concrete at interfacial corners of rocking walls(RWs)is easily crushed due to local extreme compression during the rocking process.An innovative RW with a curved interface is proposed to prevent interfacial corners from producing local damage,enhancing its earthquake resilient performance(ERP).The precast wall panel with a curved interface is assembled into an integral self-centering hybrid rocking wall(SCRW)by two post-tensioned unbonded prestressed tendons.Moreover,two ordinary energy dissipation steel rebars and two shear reinforcements are arranged to increase the energy dissipation capacity and lateral resistance.Two SCRW specimens and one monolithic reinforced concrete(RC)shear wall(SW)were tested under pseudo-static loading to compare the ERPs of the proposed SCRW and the SW,focusing on studying the effect of the curved interface on the SCRW.The key resilient performance of rocking effects,failure modes,and hysteretic properties of the SCRW were explored.The results show that nonlinear deformations of the SCRW are concentrated along the interface between the SCRW and the foundation,avoiding damage within the SCRW.The restoring force provided by the prestressed tendons can effectively realize self-centering capacity with small residual deformation,and the resilient performance of the SCRW is better than that of monolithic SW.In addition,the curved interface of the SCRW makes the rocking center change and move inward,partially relieving the stress concentration and crush of concrete.The rocking range of the rocking center is about 41.4%of the width of the SCRW.
文摘At present,it is impossible to deny the existence of artificial intelligence in various areas of social life,understood as the simulation of expert human intelligence from computer processes that involve learning,reasoning,and self-correction,its benefits to the medical field,in particular,are innumerable,but their incorporation into health systems has been gradual for many reasons.According to the above,this research analyzed artificial intelligence based on resilient leadership in the health sector,for which qualitative research was carried out with a documentary-bibliographic design with printed and electronic documentary sources with theoretical contributions fromÁvila,Mayer,and Quesada[1],Morgan[2],Villa[3],and Finol[4],among others.It is highlighted that resilient leadership has become a strategic factor in all organizations,since times of uncertainty and changes lead institutions to properly manage the incorporation of technologies specifically AI,achieving in this way that the centers and professionals in the field of health assume the needs of the contexts and the innovations of the same.It is concluded that resilient leadership will allow artificial intelligence in the health sector to generate higher levels of learning and adaptability to the transformations that are necessary,whose resistance would make its application difficult and in the long run it will leave behind professionals who refuse to assume the contributions of these innovative techniques in medical practice.
基金supported in part by Australian Research Council Discovery Early Career Researcher Award(DE210100273)。
文摘Connected automated vehicles(CAVs)serve as a promising enabler for future intelligent transportation systems because of their capabilities in improving traffic efficiency and driving safety,and reducing fuel consumption and vehicle emissions.A fundamental issue in CAVs is platooning control that empowers a convoy of CAVs to be cooperatively maneuvered with desired longitudinal spacings and identical velocities on roads.This paper addresses the issue of resilient and safe platooning control of CAVs subject to intermittent denial-of-service(DoS)attacks that disrupt vehicle-to-vehicle communications.First,a heterogeneous and uncertain vehicle longitudinal dynamic model is presented to accommodate a variety of uncertainties,including diverse vehicle masses and engine inertial delays,unknown and nonlinear resistance forces,and a dynamic platoon leader.Then,a resilient and safe distributed longitudinal platooning control law is constructed with an aim to preserve simultaneous individual vehicle stability,attack resilience,platoon safety and scalability.Furthermore,a numerically efficient offline design algorithm for determining the desired platoon control law is developed,under which the platoon resilience against DoS attacks can be maximized but the anticipated stability,safety and scalability requirements remain preserved.Finally,extensive numerical experiments are provided to substantiate the efficacy of the proposed platooning method.
基金This work was supported in part by the National Natural Science Foundation of China(61903258)Guangdong Basic and Applied Basic Research Foundation(2022A1515010234)+1 种基金the Project of Department of Education of Guangdong Province(2022KTSCX105)Qatar National Research Fund(NPRP12C-0814-190012).
文摘This paper studies the countermeasure design problems of distributed resilient time-varying formation-tracking control for multi-UAV systems with single-way communications against composite attacks,including denial-of-services(DoS)attacks,false-data injection attacks,camouflage attacks,and actuation attacks(AAs).Inspired by the concept of digital twin,a new two-layered protocol equipped with a safe and private twin layer(TL)is proposed,which decouples the above problems into the defense scheme against DoS attacks on the TL and the defense scheme against AAs on the cyber-physical layer.First,a topologyrepairing strategy against frequency-constrained DoS attacks is implemented via a Zeno-free event-triggered estimation scheme,which saves communication resources considerably.The upper bound of the reaction time needed to launch the repaired topology after the occurrence of DoS attacks is calculated.Second,a decentralized adaptive and chattering-relief controller against potentially unbounded AAs is designed.Moreover,this novel adaptive controller can achieve uniformly ultimately bounded convergence,whose error bound can be given explicitly.The practicability and validity of this new two-layered protocol are shown via a simulation example and a UAV swarm experiment equipped with both Ultra-WideBand and WiFi communication channels.
基金supported by the National Key R&D Program of China(2022YFF1303301)the National Natural Science Foundation of China(52179026,42101115,41901100,32301671)+1 种基金the China Postdoctoral Science Foundation Project(2022M720162)the XPCC Science and Technique Foundation(2021AB021).
文摘Water-salt balance is critical for the stable coexistence of salt-affected and groundwater-fed oasis-desert ecosystems. Yet, a comprehensive investigation of how soil salinization and groundwater degradation threaten the coexistence of oasis-desert ecosystems is still scarce, especially under the compounding effects of human activities and climatic changes. Here, we assessed the impacts of irrigated agriculture on hydrological regimes in oasisdesert systems, investigated the spatio-temporal variations of soil salinization in irrigated cropland, and evaluated the implications of the interplays of soil salinization and groundwater degradation on the coexistence of oasis-desert ecosystems in northwestern China, based on meaningful modelling approaches and comprehensive measurements over 1995–2020. The results showed that the irrigation return flow coefficient decreased sharply from 0.21 ± 0.09 in the traditional irrigation period to 0.09 ± 0.01 in the water-saving irrigation period. The continuous drop in groundwater tables and significant degradation of groundwater quality are occurring throughout this watershed. The eco-environmental flows are reaching to their limit with watershed closures(i.e.,the drainage from the oasis region into the desert region is being weakened or even eliminated), although these progressions were largely hidden by regional precipitation and streamflow variability. The process of salt migration and accumulation across different landscapes in oasis-desert system is being reshaped, and soil salinization in water-saving agricultural irrigated lands is accelerating with a regional average annual growth rate of18%. The vegetation in this watershed is degrading, and anthropogenic disturbance accelerates this trend. Our results highlight that environmental stress adaptation strategies must account for resilience maintenance to avoid accelerating catastrophic transitions in oasis-desert ecosystems. Determining the optimal oasis scales and formulating the best irrigation management plans are effective and resilient decision-making ways to maintain the coexistence relationship of oasis-desert ecosystem in drylands.
基金National Natural Science Foundation of China(Grant No.62203111)the Open Research Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University(Grant No.21P01)the Foundation of Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology,Ministry of Education,China(Grant No.SEU-MIAN-202101)to provide fund for conducting experiments。
文摘Based on the high positioning accuracy,low cost and low-power consumption,the ultra-wide-band(UWB)is an ideal solution for indoor unmanned aerial vehicle(UAV)localization and navigation.However,the UWB signals are easy to be blocked or reflected by obstacles such as walls and furniture.A resilient tightly-coupled inertial navigation system(INS)/UWB integration is proposed and implemented for indoor UAV navigation in this paper.A factor graph optimization(FGO)method enhanced by resilient stochastic model is established to cope with the indoor challenging scenarios.To deal with the impact of UWB non-line-of-sight(NLOS)signals and noise uncertainty,the conventional neural net-works(CNNs)are introduced into the stochastic modelling to improve the resilience and reliability of the integration.Based on the status that the UWB features are limited,a‘two-phase'CNNs structure was designed and implemented:one for signal classification and the other one for measurement noise prediction.The proposed resilient FGO method is tested on flighting UAV platform under actual indoor challenging scenario.Compared to classical FGO method,the overall positioning errors can be decreased from about 0.60 m to centimeter-level under signal block and reflection scenarios.The superiority of resilient FGO which effectively verified in constrained environment is pretty important for positioning accuracy and integrity for indoor navigation task.
基金Key Program of National Natural Science Foundation of China(No.41931076)Laoshan Laboratory(No.LSKJ202205101)+1 种基金National Key R&D Program of China(No.2020YFB0505800)National Natural Science Foundation of China for Young Scholar(No.41904042)。
文摘Any single Positioning,Navigation and Timing(PNT)technology has its vulnerability and limits,even the powerful Global Navigation Satellite System(GNSS)is no exception.To provide continuous and reliable PNT information to users,the theory and technique of comprehensive PNT information system and resilient PNT application system have attracted great attention from Chinese scholars.We try to summarize the progress and development of the synthetic PNT system,including the proposal,the modification and the improvement of the comprehensive PNT,as well as the follow-up resilient PNT.The frame of China’s comprehensive PNT system consisted of comprehensive PNT infrastructure and comprehensive PNT application system is initially described;the achievements on some main PNT technologies are introduced;the conceptual models of resilient PNT are given;besides,existing researches on resilient function models and stochastic models are summarized according to different user scenarios.
基金supported by VILLUM FONDEN,Denmark under the VILLUM Investigator Grant(No.25920):Center for Research on Microgrids(CROM)。
文摘In light of the growing integration of renewable energy sources in power systems,the adoption of DC microgrids has become increasingly popular,due to its simple structure,having no frequency,power factor concerns.However,the dependence of DC microgrids on cyber-networks also makes them susceptible to cyber-attacks.Potential cyberattacks can disrupt power system facilities and result in significant economic and loss of life.To address this concern,this paper presents an attack-resilient control strategy for microgrids to ensure voltage regulation and power sharing with stable operation under cyber-attack on the actuators.This paper first formulates the cyber-security problem considering a distributed generation based microgrid using the converter model,after which an attack-resilient control is proposed to eliminate the actuator attack impact on the system.Steady state analysis and root locus validation illustrate the feasibility of the proposed method.The effectiveness of the proposed control scheme is demonstrated through simulation results.