In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is intr...In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.展开更多
基金National Natural Science Foundation of China(No.61903291)。
文摘In order to solve the problem of path planning of mobile robots in a dynamic environment,an improved rapidly-exploring random tree^(*)(RRT^(*))algorithm is proposed in this paper.First,the target bias sampling is introduced to reduce the randomness of the RRT^(*)algorithm,and then the initial path planning is carried out in a static environment.Secondly,apply the path in a dynamic environment,and use the initially planned path as the path cache.When a new obstacle appears in the path,the invalid path is clipped and the path is replanned.At this time,there is a certain probability to select the point in the path cache as the new node,so that the new path maintains the trend of the original path to a greater extent.Finally,MATLAB is used to carry out simulation experiments for the initial planning and replanning algorithms,respectively.More specifically,compared with the original RRT^(*)algorithm,the simulation results show that the number of nodes used by the new improved algorithm is reduced by 43.19%on average.