The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot...The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.展开更多
The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric ...The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.展开更多
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio...Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.展开更多
Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters...Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of flood inundation.Over the past 20 years,the field of remote sensing for floods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of flood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“flood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for floods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and flood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid flood hazard extraction and flood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance flood identification accuracy.Recent studies focus on spatial and temporal changes in flooding,risk identification,and early warning for climate change-related flooding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term flood disaster sequences to better understand their mechanisms.展开更多
Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the m...Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.展开更多
Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-l...Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.展开更多
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l...An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.展开更多
Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictab...Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks.展开更多
Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster...Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.展开更多
High-resolution satellite data have been playing an important role in agricultural remote sensing monitoring. However, the major data sources of high-resolution images are not owned by China. The cost of large scale u...High-resolution satellite data have been playing an important role in agricultural remote sensing monitoring. However, the major data sources of high-resolution images are not owned by China. The cost of large scale use of high resolution imagery data becomes prohibitive. In pace of the launch of the Chinese "High Resolution Earth Observation Systems", China is able to receive superb high-resolution remotely sensed images (GF series) that equalizes or even surpasses foreign similar satellites in respect of spatial resolution, scanning width and revisit period. This paper provides a perspective of using high resolution remote sensing data from satellite GF-1 for agriculture monitoring. It also assesses the applicability of GF-1 data for agricultural monitoring, and identifies potential applications from regional to national scales. GF-1's high resolution (i.e., 2 m/8 m), high revisit cycle (i.e., 4 days), and its visible and near-infrared (VNIR) spectral bands enable a continuous, efficient and effective agricultural dynamics monitoring. Thus, it has gradually substituted the foreign data sources for mapping crop planting areas, monitoring crop growth, estimating crop yield, monitoring natural disasters, and supporting precision and facility agriculture in China agricultural remote sensing monitoring system (CHARMS). However, it is still at the initial stage of GF-1 data application in agricultural remote sensing monitoring. Advanced algorithms for estimating agronomic parameters and soil quality with GF-1 data need to be further investigated, especially for improving the performance of remote sensing monitoring in the fragmented landscapes. In addition, the thematic product series in terms of land cover, crop allocation, crop growth and production are required to be developed in association with other data sources at multiple spatial scales. Despite the advantages, the issues such as low spectrum resolution and image distortion associated with high spatial resolution and wide swath width, might pose challenges for GF-1 data applications and need to be addressed in future agricultural monitoring.展开更多
Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful w...Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful within large scale agriculture applications (such as on a national or provincial scale), it may not supply sufifcient information with adequate resolution, accurate geo-referencing, and specialized biological parameters for use in relation to the rapid developments being made in modern agriculture. Information that is more sophisticated and accurate is required to support reliable decision-making, thereby guaranteeing agricultural sustainability and national food security. To achieve this, strong integration of information is needed from multi-sources, multi-sensors, and multi-scales. In this paper, we propose a new framework of satellite, aerial, and ground-integrated (SAGI) agricultural remote sensing for use in comprehensive agricultural monitoring, modeling, and management. The prototypes of SAGI agriculture remote sensing are ifrst described, followed by a discussion of the key techniques used in joint data processing, image sequence registration and data assimilation. Finally, the possible applications of the SAGI system in supporting national food security are discussed.展开更多
In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remot...In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remote sensing, and seismo-ionospheric detecting. Many new monitoring data in this domain have been used, and new data processing methods have been developed to obtain high-precision images about crustal deformation, outgoing longwave radiation (OLR), surface latent heat flux (SLHF), and ionospheric parameters. The development in monitoring technology and data processing technique largely enriches earthquake research information and provides new tools for earthquake stereoscope monitoring system, especially on the space part. Finally, new developing trend in this area was introduced, and some key problems in future work were pointed out.展开更多
The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and ra...The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.展开更多
Requirements for monitoring the coastal zone environment are first summarized. Then the appli- cation of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coa...Requirements for monitoring the coastal zone environment are first summarized. Then the appli- cation of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coast beaches and bottom matter, target recognition, mine detection, oil spill identification and ocean color remote sensing. Finally, what is needed to follow on in application of hyperspectral remote sensing to coast environment is recommended.展开更多
Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of e...Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.展开更多
The accurate assessment of forest damage is important basis for the forest post-disaster recovery process and ecosystem management. This study evaluates the spatial distribution of damaged forest and its damaged sever...The accurate assessment of forest damage is important basis for the forest post-disaster recovery process and ecosystem management. This study evaluates the spatial distribution of damaged forest and its damaged severity caused by ice-snow disaster that occurred in southern China during January 10 to February 2 in 2008. The moderate-resolution imaging spectroradiometer(MODIS)13 Q1 products are used, which include two vegetation indices data of NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index). Furtherly, after Quality Screening(QS) and Savizky-Golay(S-G) filtering of MODIS 13 Q1 data, four evaluation indices are obtained, which are NDVI with QS(QSNDVI), EVI with QS(QSEVI), NDVI with S-G filtering(SGNDVI) and EVI with S-G filtering(SGEVI). The study provides a new way of firstly determining the threshold for each image pixel for damaged forest evaluation, by computing the pre-disaster reference value and change threshold with vegetation index from remote sensing data. Results show obvious improvement with the new way for forest damage evaluation, evaluation result of forest damage is much close to the field survey data with standard error of only 0.95 and 1/3 less than the result that evaluated from other threshold method. Comparatively, the QSNDVI shows better performance than other three indices on evaluating forest damages. The evaluated result with QSNDVI shows that the severe, moderate, mild damaged rates of Southern China forests are 47.33%, 34.15%, 18.52%, respectively. By analyzing the influence of topographic and meteorological factors on forest-vegetation damage, we found that the precipitation on freezing days has greater impact on forest-vegetation damage, which is regarded as the most important factor. This study could be a scientific and reliable reference for evaluating the forest damages from ice-snow frozen disasters.展开更多
Using the data collected over the Southern Great Plains ARM site from 2006 to 2010, the surface Active Remote Sensing of Cloud (ARSCL) and CloudSat-CALIPSO satellite (CC) retrievals of total cloud and six specifie...Using the data collected over the Southern Great Plains ARM site from 2006 to 2010, the surface Active Remote Sensing of Cloud (ARSCL) and CloudSat-CALIPSO satellite (CC) retrievals of total cloud and six specified cloud types [low, midlow (ML), high-mid-low (HML), mid, high-mid (HM) and high] were compared in terms of cloud fraction (CF), cloud-base height (CBH), cloud-top height (CTH) and cloud thickness (CT), on different temporal scales, to identify their respective advantages and limitations. Good agreement between the two methods was exhibited in the total CF. However, large discrepancies were found between the cloud distributions of the two methods at a high (240-m) vertical grid spacing. Compared to the satellites, ARSCL retrievals detected more boundary layer clouds, while they underestimated high clouds. In terms of the six specific cloud types, more low- and mid-level clouds but less HML- and high-level clouds were detected by ARSCL than by CC. In contrast, the ARSCL retrievals of ML- and HM-level clouds agreed more closely with the estimations from the CC product. Lower CBHs tended to be reported by the surface data for low-, ML- and HML-level clouds; however, higher CTHs were often recorded by the satellite product for HML-, HM- and high-level clouds. The mean CTs for low- and ML-level cloud were similar between the two products; however, the mean CTs for HML-, mid-, HM- and high-level clouds from ARSCL were smaller than those from CC.展开更多
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,...Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.展开更多
Simulated annealing is one of the robust optimization schemes. Simulated annealing mimics the annealing process of the slow cooling of a heated metal to reach a stable minimum energy state. In this paper, we adopt sim...Simulated annealing is one of the robust optimization schemes. Simulated annealing mimics the annealing process of the slow cooling of a heated metal to reach a stable minimum energy state. In this paper, we adopt simulated annealing to study the problem of the remote sensing of atmospheric duct parameters for two different geometries of propagation measurement. One is from a single emitter to an array of radio receivers (vertical measurements), and the other is from the radar clutter returns (horizontal measurements). Basic principles of simulated annealing and its applications to refractivity estimation are introduced. The performance of this method is validated using numerical experiments and field measurements collected at the East China Sea. The retrieved results demonstrate the feasibility of simulated annealing for near real-time atmospheric refractivity estimation. For comparison, the retrievals of the genetic algorithm are also presented. The comparisons indicate that the convergence speed of simulated annealing is faster than that of the genetic algorithm, while the anti-noise ability of the genetic algorithm is better than that of simulated annealing.展开更多
基金This project is supported by the National Natural Science Foundation of China(NSFC)(No.61902158).
文摘The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality.
基金This research was supported by the Ningxia Hui Autonomous Region Key Research and Development Plan(2022BEG03052).
文摘The vegetation growth status largely represents the ecosystem function and environmental quality.Hyperspectral remote sensing data can effectively eliminate the effects of surface spectral reflectance and atmospheric scattering and directly reflect the vegetation parameter information.In this study,the abandoned mining area in the Helan Mountains,China was taken as the study area.Based on hyperspectral remote sensing images of Zhuhai No.1 hyperspectral satellite,we used the pixel dichotomy model,which was constructed using the normalized difference vegetation index(NDVI),to estimate the vegetation coverage of the study area,and evaluated the vegetation growth status by five vegetation indices(NDVI,ratio vegetation index(RVI),photochemical vegetation index(PVI),red-green ratio index(RGI),and anthocyanin reflectance index 1(ARI1)).According to the results,the reclaimed vegetation growth status in the study area can be divided into four levels(unhealthy,low healthy,healthy,and very healthy).The overall vegetation growth status in the study area was generally at low healthy level,indicating that the vegetation growth status in the study area was not good due to short-time period restoration and harsh damaged environment such as high and steep rock slopes.Furthermore,the unhealthy areas were mainly located in Dawukougou where abandoned mines were concentrated,indicating that the original mining activities have had a large effect on vegetation ecology.After ecological restoration of abandoned mines,the vegetation coverage in the study area has increased to a certain extent,but the amplitude was not large.The situation of vegetation coverage in the northern part of the study area was worse than that in the southern part,due to abandoned mines mainly concentrating in the northern part of the Helan Mountains.The combination of hyperspectral remote sensing data and vegetation indices can comprehensively extract the characteristics of vegetation,accurately analyze the plant growth status,and provide technical support for vegetation health evaluation.
基金The National Natural Science Foundation of China under contract Nos 61890964 and 42206177the Joint Funds of the National Natural Science Foundation of China under contract No.U1906217.
文摘Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection.
文摘Background,aim,and scope In the context of climate change,extreme precipitation and resulting flooding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of flood inundation.Over the past 20 years,the field of remote sensing for floods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of flood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“flood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for floods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and flood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid flood hazard extraction and flood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance flood identification accuracy.Recent studies focus on spatial and temporal changes in flooding,risk identification,and early warning for climate change-related flooding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term flood disaster sequences to better understand their mechanisms.
文摘Water erosion is a serious problem that leads to soil degradation,loss,and the destruction of structures.Assessing the risk of erosion and determining the affected areas has become crucial in order to understand the main factors influencing its evolution and to minimize its impacts.This study focuses on evaluating the risk of erosion in the Assif el mal watershed,which is located in the High Atlas Mountains.The Erosion Potential Model(EPM)is used to estimate soil losses depending on various parameters such as lithology,hydrology,topography,and morphometry.Geographic information systems and remote sensing techniques are employed to map areas with high erosive potential and their relationship with the distribution of factors involved.Different digital elevation models are also used in this study to highlight the impact of data quality on the accuracy of the results.The findings reveal that approximately 59%of the total area in the Assif el mal basin has low to very low potential for soil losses,while 22%is moderately affected and 19.9%is at high to very high risk.It is therefore crucial to implement soil conservation measures to mitigate and prevent erosion risks.
基金Supported by Guizhou Provincial Key Technology R&D Program ([2023]General 211)Guizhou Science and Technology Innovation Base Construction Project (Qian Ke He Zhong Yin Di[2023]005).
文摘Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope.
文摘An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety.
基金funded by the Gansu Provincial Science and Technology Program(22ZD6FA005)Gansu Postdoctoral Science Foundation(Grant number-E339880204)。
文摘Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks.
基金supported by the National Key Research and Development Program of China(2020YFC1512304).
文摘Remote sensing data plays an important role in natural disaster management.However,with the increase of the variety and quantity of remote sensors,the problem of“knowledge barriers”arises when data users in disaster field retrieve remote sensing data.To improve this problem,this paper proposes an ontology and rule based retrieval(ORR)method to retrieve disaster remote sensing data,and this method introduces ontology technology to express earthquake disaster and remote sensing knowledge,on this basis,and realizes the task suitability reasoning of earthquake disaster remote sensing data,mining the semantic relationship between remote sensing metadata and disasters.The prototype system is built according to the ORR method,which is compared with the traditional method,using the ORR method to retrieve disaster remote sensing data can reduce the knowledge requirements of data users in the retrieval process and improve data retrieval efficiency.
基金financed by the National Natural Science Foundation of China (41501111 and 41271112)the National Non-profit Institute Research Grant of Chinese Academy of Agricultural Sciences (CAAS) (IARRP-2015-10)
文摘High-resolution satellite data have been playing an important role in agricultural remote sensing monitoring. However, the major data sources of high-resolution images are not owned by China. The cost of large scale use of high resolution imagery data becomes prohibitive. In pace of the launch of the Chinese "High Resolution Earth Observation Systems", China is able to receive superb high-resolution remotely sensed images (GF series) that equalizes or even surpasses foreign similar satellites in respect of spatial resolution, scanning width and revisit period. This paper provides a perspective of using high resolution remote sensing data from satellite GF-1 for agriculture monitoring. It also assesses the applicability of GF-1 data for agricultural monitoring, and identifies potential applications from regional to national scales. GF-1's high resolution (i.e., 2 m/8 m), high revisit cycle (i.e., 4 days), and its visible and near-infrared (VNIR) spectral bands enable a continuous, efficient and effective agricultural dynamics monitoring. Thus, it has gradually substituted the foreign data sources for mapping crop planting areas, monitoring crop growth, estimating crop yield, monitoring natural disasters, and supporting precision and facility agriculture in China agricultural remote sensing monitoring system (CHARMS). However, it is still at the initial stage of GF-1 data application in agricultural remote sensing monitoring. Advanced algorithms for estimating agronomic parameters and soil quality with GF-1 data need to be further investigated, especially for improving the performance of remote sensing monitoring in the fragmented landscapes. In addition, the thematic product series in terms of land cover, crop allocation, crop growth and production are required to be developed in association with other data sources at multiple spatial scales. Despite the advantages, the issues such as low spectrum resolution and image distortion associated with high spatial resolution and wide swath width, might pose challenges for GF-1 data applications and need to be addressed in future agricultural monitoring.
基金supported by the Opening Project of the Key Laboratory of Agri-Informatics,Ministry of Agriculture of China(2012004)the National Basic Research Program of China(973 Program,2010CB951500)+2 种基金the Innovation Project of Chinese Academy of Agricultural Sciencesthe National Natural Science Foundation of China(41301365)the National High-Tech R&D Program of China(863 Program,2013AA12A401)
文摘Remote sensing, in particular satellite imagery, has been widely used to map cropland, analyze cropping systems, monitor crop changes, and estimate yield and production. However, although satellite imagery is useful within large scale agriculture applications (such as on a national or provincial scale), it may not supply sufifcient information with adequate resolution, accurate geo-referencing, and specialized biological parameters for use in relation to the rapid developments being made in modern agriculture. Information that is more sophisticated and accurate is required to support reliable decision-making, thereby guaranteeing agricultural sustainability and national food security. To achieve this, strong integration of information is needed from multi-sources, multi-sensors, and multi-scales. In this paper, we propose a new framework of satellite, aerial, and ground-integrated (SAGI) agricultural remote sensing for use in comprehensive agricultural monitoring, modeling, and management. The prototypes of SAGI agriculture remote sensing are ifrst described, followed by a discussion of the key techniques used in joint data processing, image sequence registration and data assimilation. Finally, the possible applications of the SAGI system in supporting national food security are discussed.
基金supported by the International Science and Technology Cooperation Program of China(2010DFB20190)the Key Project of Earthquake Science(201008007)
文摘In this paper, the progress and development on remote sensing technology applied in earthquake monitoring research are summarized, such as differential interference synthetic aperture radar (D-InSAR), infrared remote sensing, and seismo-ionospheric detecting. Many new monitoring data in this domain have been used, and new data processing methods have been developed to obtain high-precision images about crustal deformation, outgoing longwave radiation (OLR), surface latent heat flux (SLHF), and ionospheric parameters. The development in monitoring technology and data processing technique largely enriches earthquake research information and provides new tools for earthquake stereoscope monitoring system, especially on the space part. Finally, new developing trend in this area was introduced, and some key problems in future work were pointed out.
基金Project supported by the National Natural Science Foundation of China (No.40571115)the National High Tech-nology Research and Development Program (863 Program) of China (Nos.2006AA120101 and 2007AA10Z205)
文摘The radial basis function (RBF) emerged as a variant of artificial neural network. Generalized regression neural network (GRNN) is one type of RBF, and its principal advantages are that it can quickly learn and rapidly converge to the optimal regression surface with large number of data sets. Hyperspectral reflectance (350 to 2500 nm) data were recorded at two different rice sites in two experiment fields with two cultivars, three nitrogen treatments and one plant density (45 plants m^-2). Stepwise multivariable regression model (SMR) and RBF were used to compare their predictability for the leaf area index (LAI) and green leaf chlorophyll density (GLCD) of rice based on reflectance (R) and its three different transformations, the first derivative reflectance (D1), the second derivative reflectance (D2) and the log-transformed reflectance (LOG). GRNN based on D1 was the best model for the prediction of rice LAI and CLCD. The relationships between different transformations of reflectance and rice parameters could be further improved when RBF was employed. Owing to its strong capacity for nonlinear mapping and good robustness, GRNN could maximize the sensitivity to chlorophyll content using D1. It is concluded that RBF may provide a useful exploratory and predictive tool for the estimation of rice biophysical parameters.
基金The National "973" Program of China under contract No.2009CB723902the Key Projects of the Knowledge Innovation Program of Chinese Academy of Sciences under contract No.KZCX1-YW-14-2.
文摘Requirements for monitoring the coastal zone environment are first summarized. Then the appli- cation of hyperspectral remote sensing to coast environment investigation is introduced, such as the classification of coast beaches and bottom matter, target recognition, mine detection, oil spill identification and ocean color remote sensing. Finally, what is needed to follow on in application of hyperspectral remote sensing to coast environment is recommended.
基金National Natural Science Foundation of China No.40101028+2 种基金 Knowledge Innovation Project of the Geographic Sciences and Natural Resources Research CAS No.CXIOG-D02-02
文摘Both marginal fluctuation and areal change were used to detect the accurate dynamics of glacier change in the study area using Landsat MSS, ETM, SPOT HRV and topographic maps based on GIS. From 1963 to 1977, four of eight glaciers advanced, two of them retreated and another two kept stable, the glacier advanced generally. From 1977 to 1986, four of eight glaciers retreated and the others kept stable, but the retreated glaciers were those which advanced from 1963 to 1977. From 1986 to 2000, seven of eight glaciers retreated and only one glacier kept stable, the retreating velocity was 10-15 m/a. Glacier recession in this period became very fast and universal. From 1963 to 2000, the area of glaciers decreased from 5479.0 ha to 4795.4 ha, up to 12.5%. It is alarming that most of glacier retreats happened from 1986 to 2000. This was very consistent with change process of summer mean temperature in this region and global warming beginning in the 1980s.
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0604804)Advanced Scientific Research Projects of Chinese Academy of Sciences(No.QYZDY-SSW-DQC007-34)+1 种基金National Natural Science Foundation of China(No.41301607)Innovation Project of LREIS(State Key Laboratory of Resources and Environmental Information System)of Chinese Academy of Sciences(No.O88RAA02YA)
文摘The accurate assessment of forest damage is important basis for the forest post-disaster recovery process and ecosystem management. This study evaluates the spatial distribution of damaged forest and its damaged severity caused by ice-snow disaster that occurred in southern China during January 10 to February 2 in 2008. The moderate-resolution imaging spectroradiometer(MODIS)13 Q1 products are used, which include two vegetation indices data of NDVI(Normalized Difference Vegetation Index) and EVI(Enhanced Vegetation Index). Furtherly, after Quality Screening(QS) and Savizky-Golay(S-G) filtering of MODIS 13 Q1 data, four evaluation indices are obtained, which are NDVI with QS(QSNDVI), EVI with QS(QSEVI), NDVI with S-G filtering(SGNDVI) and EVI with S-G filtering(SGEVI). The study provides a new way of firstly determining the threshold for each image pixel for damaged forest evaluation, by computing the pre-disaster reference value and change threshold with vegetation index from remote sensing data. Results show obvious improvement with the new way for forest damage evaluation, evaluation result of forest damage is much close to the field survey data with standard error of only 0.95 and 1/3 less than the result that evaluated from other threshold method. Comparatively, the QSNDVI shows better performance than other three indices on evaluating forest damages. The evaluated result with QSNDVI shows that the severe, moderate, mild damaged rates of Southern China forests are 47.33%, 34.15%, 18.52%, respectively. By analyzing the influence of topographic and meteorological factors on forest-vegetation damage, we found that the precipitation on freezing days has greater impact on forest-vegetation damage, which is regarded as the most important factor. This study could be a scientific and reliable reference for evaluating the forest damages from ice-snow frozen disasters.
基金supported by the National Natural Science Foundation of China(Grant Nos.61327810,41275039,41675033,and 91337214)
文摘Using the data collected over the Southern Great Plains ARM site from 2006 to 2010, the surface Active Remote Sensing of Cloud (ARSCL) and CloudSat-CALIPSO satellite (CC) retrievals of total cloud and six specified cloud types [low, midlow (ML), high-mid-low (HML), mid, high-mid (HM) and high] were compared in terms of cloud fraction (CF), cloud-base height (CBH), cloud-top height (CTH) and cloud thickness (CT), on different temporal scales, to identify their respective advantages and limitations. Good agreement between the two methods was exhibited in the total CF. However, large discrepancies were found between the cloud distributions of the two methods at a high (240-m) vertical grid spacing. Compared to the satellites, ARSCL retrievals detected more boundary layer clouds, while they underestimated high clouds. In terms of the six specific cloud types, more low- and mid-level clouds but less HML- and high-level clouds were detected by ARSCL than by CC. In contrast, the ARSCL retrievals of ML- and HM-level clouds agreed more closely with the estimations from the CC product. Lower CBHs tended to be reported by the surface data for low-, ML- and HML-level clouds; however, higher CTHs were often recorded by the satellite product for HML-, HM- and high-level clouds. The mean CTs for low- and ML-level cloud were similar between the two products; however, the mean CTs for HML-, mid-, HM- and high-level clouds from ARSCL were smaller than those from CC.
基金Supported by the Fundamental Research Projects of Science&Technology Innovation and Development Plan in Yantai City(No.2022JCYJ041)the Natural Science Foundation of Shandong Province(Nos.ZR2022MD042,ZR2022MD028)+1 种基金the Seed Project of Yantai Institute of Coastal Zone Research,Chinese Academy of Sciences(No.YICE351030601)the NSFC Fund Project(No.42206240)。
文摘Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management.
基金Project supported by the National Natural Science Foundation of China (Grant No.40775023)
文摘Simulated annealing is one of the robust optimization schemes. Simulated annealing mimics the annealing process of the slow cooling of a heated metal to reach a stable minimum energy state. In this paper, we adopt simulated annealing to study the problem of the remote sensing of atmospheric duct parameters for two different geometries of propagation measurement. One is from a single emitter to an array of radio receivers (vertical measurements), and the other is from the radar clutter returns (horizontal measurements). Basic principles of simulated annealing and its applications to refractivity estimation are introduced. The performance of this method is validated using numerical experiments and field measurements collected at the East China Sea. The retrieved results demonstrate the feasibility of simulated annealing for near real-time atmospheric refractivity estimation. For comparison, the retrievals of the genetic algorithm are also presented. The comparisons indicate that the convergence speed of simulated annealing is faster than that of the genetic algorithm, while the anti-noise ability of the genetic algorithm is better than that of simulated annealing.