期刊文献+
共找到40,033篇文章
< 1 2 250 >
每页显示 20 50 100
Advancements in Remote Sensing Image Dehazing: Introducing URA-Net with Multi-Scale Dense Feature Fusion Clusters and Gated Jump Connection
1
作者 Hongchi Liu Xing Deng Haijian Shao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2397-2424,共28页
The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivot... The degradation of optical remote sensing images due to atmospheric haze poses a significant obstacle,profoundly impeding their effective utilization across various domains.Dehazing methodologies have emerged as pivotal components of image preprocessing,fostering an improvement in the quality of remote sensing imagery.This enhancement renders remote sensing data more indispensable,thereby enhancing the accuracy of target iden-tification.Conventional defogging techniques based on simplistic atmospheric degradation models have proven inadequate for mitigating non-uniform haze within remotely sensed images.In response to this challenge,a novel UNet Residual Attention Network(URA-Net)is proposed.This paradigmatic approach materializes as an end-to-end convolutional neural network distinguished by its utilization of multi-scale dense feature fusion clusters and gated jump connections.The essence of our methodology lies in local feature fusion within dense residual clusters,enabling the extraction of pertinent features from both preceding and current local data,depending on contextual demands.The intelligently orchestrated gated structures facilitate the propagation of these features to the decoder,resulting in superior outcomes in haze removal.Empirical validation through a plethora of experiments substantiates the efficacy of URA-Net,demonstrating its superior performance compared to existing methods when applied to established datasets for remote sensing image defogging.On the RICE-1 dataset,URA-Net achieves a Peak Signal-to-Noise Ratio(PSNR)of 29.07 dB,surpassing the Dark Channel Prior(DCP)by 11.17 dB,the All-in-One Network for Dehazing(AOD)by 7.82 dB,the Optimal Transmission Map and Adaptive Atmospheric Light For Dehazing(OTM-AAL)by 5.37 dB,the Unsupervised Single Image Dehazing(USID)by 8.0 dB,and the Superpixel-based Remote Sensing Image Dehazing(SRD)by 8.5 dB.Particularly noteworthy,on the SateHaze1k dataset,URA-Net attains preeminence in overall performance,yielding defogged images characterized by consistent visual quality.This underscores the contribution of the research to the advancement of remote sensing technology,providing a robust and efficient solution for alleviating the adverse effects of haze on image quality. 展开更多
关键词 remote sensing image image dehazing deep learning feature fusion
下载PDF
Hyperspectral remote sensing identification of marine oil emulsions based on the fusion of spatial and spectral features
2
作者 Xinyue Huang Yi Ma +1 位作者 Zongchen Jiang Junfang Yang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第3期139-154,共16页
Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protectio... Marine oil spill emulsions are difficult to recover,and the damage to the environment is not easy to eliminate.The use of remote sensing to accurately identify oil spill emulsions is highly important for the protection of marine environments.However,the spectrum of oil emulsions changes due to different water content.Hyperspectral remote sensing and deep learning can use spectral and spatial information to identify different types of oil emulsions.Nonetheless,hyperspectral data can also cause information redundancy,reducing classification accuracy and efficiency,and even overfitting in machine learning models.To address these problems,an oil emulsion deep-learning identification model with spatial-spectral feature fusion is established,and feature bands that can distinguish between crude oil,seawater,water-in-oil emulsion(WO),and oil-in-water emulsion(OW)are filtered based on a standard deviation threshold–mutual information method.Using oil spill airborne hyperspectral data,we conducted identification experiments on oil emulsions in different background waters and under different spatial and temporal conditions,analyzed the transferability of the model,and explored the effects of feature band selection and spectral resolution on the identification of oil emulsions.The results show the following.(1)The standard deviation–mutual information feature selection method is able to effectively extract feature bands that can distinguish between WO,OW,oil slick,and seawater.The number of bands was reduced from 224 to 134 after feature selection on the Airborne Visible Infrared Imaging Spectrometer(AVIRIS)data and from 126 to 100 on the S185 data.(2)With feature selection,the overall accuracy and Kappa of the identification results for the training area are 91.80%and 0.86,respectively,improved by 2.62%and 0.04,and the overall accuracy and Kappa of the identification results for the migration area are 86.53%and 0.80,respectively,improved by 3.45%and 0.05.(3)The oil emulsion identification model has a certain degree of transferability and can effectively identify oil spill emulsions for AVIRIS data at different times and locations,with an overall accuracy of more than 80%,Kappa coefficient of more than 0.7,and F1 score of 0.75 or more for each category.(4)As the spectral resolution decreasing,the model yields different degrees of misclassification for areas with a mixed distribution of oil slick and seawater or mixed distribution of WO and OW.Based on the above experimental results,we demonstrate that the oil emulsion identification model with spatial–spectral feature fusion achieves a high accuracy rate in identifying oil emulsion using airborne hyperspectral data,and can be applied to images under different spatial and temporal conditions.Furthermore,we also elucidate the impact of factors such as spectral resolution and background water bodies on the identification process.These findings provide new reference for future endeavors in automated marine oil spill detection. 展开更多
关键词 oil emulsions IDENTIFICATION hyperspectral remote sensing feature selection convolutional neural network(CNN) spatial-temporal transferability
下载PDF
Hot spot tracking of f lood remote sensing research over the past 22 years:abibliometric analysis using CiteSpace
3
作者 HUO Hong LIU Yan LI Yang 《地球环境学报》 CSCD 2024年第4期612-623,共12页
Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disaster... Background,aim,and scope In the context of climate change,extreme precipitation and resulting f looding events are becoming increasingly severe.Remote sensing technologies are advantageous for monitoring such disasters due to their wide observation range,periodic revisit capabilities,and continuous spatial coverage.These tools enable real-time and quantitative assessment of f lood inundation.Over the past 20 years,the field of remote sensing for f loods has seen significant advancements.Understanding the evolution of research hotspots within this field can offer valuable insights for future research directions.Materials and methods This study systematically analyzes the development and hotspot evolution in the field of f lood remote sensing,both domestically and internationally during 2000—2021.Data from CNKI(China National Knowledge Infrastructure)and WOS(Web of Science)databases are utilized for this analysis.Results(1)A total of 1693 articles have been published in this field,showing a stable growth trend post-2008.Significant contributors include the Chinese Academy of Sciences,Beijing Normal University,Wuhan University,the Italian National Research Council,and National Aeronautics and Space Administration.(2)High-frequency keywords from 2000 to 2021 include“remote sensing”“f lood”“model”“classification”“GIS”“climate change”“area”,and“MODIS”.(3)The most prominent keywords were“GIS”(8.65),“surface water”(7.16),“remote sensing”(7.07),“machine learning”(6.52),and“sentinel-2”(5.86).(4)Thirteen cluster labels were identified through clustering,divided into three phases:2000—2009(initial exploratory stage),2010—2014(period of rapid development),and 2015—2021(steady development of remote sensing for f loods and related disasters).Discussion The field exhibits strong phase-based development,with research focuses shifting over time.From 2000 to 2009,emphasis was on remote sensing image application and f lood model development.From 2010 to 2014,the focus shifted to accurate interpretation of remote sensing images,multispectral image applications,and long time series detection.From 2015 to 2021,research concentrated on steady development,leveraging large datasets and advanced data processing techniques,including improvements in water body indices,big data fusion,deep learning,and drone monitoring.Early on,SAR data,known for its all-weather capability,was crucial for rapid f lood hazard extraction and f lood hydrological models.With the rise of high-quality optical satellites,optical remote sensing has become more prevalent,though algorithm accuracy and efficiency for water body index methods still require improvement.Conclusions Data sources and methodologies have evolved from early reliance on radar data to the current exploration of optical image fusion and multi-source data integration.Algorithms now increasingly employ deep learning,super image elements,and object-oriented methods to enhance f lood identification accuracy.Recent studies focus on spatial and temporal changes in f looding,risk identification,and early warning for climate change-related f looding,including glacial melting and lake outbursts.Recommendations and perspectives To enhance monitoring accuracy and timeliness,UAV technology should be further utilized.Strengthening multi-source data fusion and assimilation is crucial,as is analyzing long-term f lood disaster sequences to better understand their mechanisms. 展开更多
关键词 f lood remote sensing CITESPACE review knowledge graph analysis
下载PDF
Spatiotemporal Evolution of Ecological Quality in Typical Karst Ecologically Fragile Areas Based on Remote Sensing Ecological Indexes
4
作者 Denghong HUANG Zhiying ZHANG Zhenzhen ZHANG 《Meteorological and Environmental Research》 2024年第2期22-28,共7页
Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-l... Fast and effective remote sensing monitoring is an important means for analyzing the spatio-temporal changes in ecological quality in fragile karst regions.This study focuses on Guanling Autonomous County,a national-level demonstration county for comprehensive desertification control.Based on Landsat TM/OLI remote sensing image data from 2005,2010,2015,and 2020,remote sensing ecological indices were used to analyze the spatio-temporal changes in ecological quality in Guanling Autonomous County from 2005 to 2020.The results show that:①the variance contribution rates of the first principal component for the four periods were 66.31%,71.59%,63.18%,and 75.24%,indicating that PC1 integrated most of the characteristics of the four indices,making the RSEI suitable for evaluating ecological quality in karst mountain areas;②the remote sensing ecological index grades have been increasing year by year,with an overall trend of improving ecological quality.The area of higher-grade ecological quality has increased spatially,while fragmented patches have gradually decreased,becoming more concentrated in the low-altitude areas in the northwest and east,and there is a trend of expansion towards higher-altitude areas;③the ecological environment quality in most areas has improved,with the improvement in RSEI spatio-temporal variation becoming more noticeable with increasing slope.Areas of higher-grade quality appeared in 2010,and the range of higher-grade quality expanded with increasing slope. 展开更多
关键词 Ecological quality remote sensing ecological index Karst mountainous area Ecological fragility Guanling Autonomous County
下载PDF
摄影测量与遥感领域主题演化研究——以《ISPRS Journal of Photogrammetry and Remote Sensing》期刊为例
5
作者 杨珂 李青山 金心怡 《测绘技术装备》 2024年第3期1-8,共8页
为了便于相关领域的研究人员了解遥感学领域的整体发展状态并进行量化分析,本文以国际摄影测量与遥感学会(ISPRS)官方刊物作为研究数据,从主题挖掘和主题关联的角度出发,在计量分析的基础上,基于隐含狄利克雷分布(LDA)和word2vec的主题... 为了便于相关领域的研究人员了解遥感学领域的整体发展状态并进行量化分析,本文以国际摄影测量与遥感学会(ISPRS)官方刊物作为研究数据,从主题挖掘和主题关联的角度出发,在计量分析的基础上,基于隐含狄利克雷分布(LDA)和word2vec的主题演化模型进行分析与研究,重点解决了摄影测量与遥感学领域主题挖掘、学科领域主题关联、学科主题演化建模和主题演化知识图谱等问题,展示了遥感学领域的主题动态演化过程。主题演化研究结果表明:1)主题强度总排名前三的主题分别是激光扫描技术、摄影测量、遥感信息提取与分类;2)随着深度学习的深入发展,遥感学领域的深度学习相关应用研究热度逐渐攀升;3)环境遥感相关方向的研究热度相对稳定,演化关系多局限于相关研究内部。 展开更多
关键词 主题演化 摄影测量与遥感 科学计量学 隐含狄利克雷分布 word2vec
下载PDF
Estimation and verification of green tide biomass based on UAV remote sensing
6
作者 Xiaopeng JIANG Zhiqiang GAO Zhicheng WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第4期1216-1226,共11页
Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,... Since 2007,the Yellow Sea green tide has broken out every summer,causing great harm to the environment and society.Although satellite remote sensing(RS)has been used in biomass research,there are several shortcomings,such as mixed pixels,atmospheric interference,and difficult field validation.The biomass of green tide has been lacking a high-precision estimation method.In this study,high-resolution unmanned aerial vehicle(UAV)RS was used to quantitatively map the biomass of green tides.By utilizing experimental data from previous studies,a robust relationship was established to link biomass to the red-green-blue floating algae index(RGB-FAI).Then,the lab-based model for green tide biomass from visible images taken by the UAV camera was developed and validated by field measurements.Re sults show that the accurate and cost-effective method is able to estimate the green tide biomass and its changes in given local waters of the near and far seas.The study provided an effective complement to the traditional satellite RS,as well as high-precision quantitative techniques for decision-making in disaster management. 展开更多
关键词 green tide biomass estimation quantitative technique Yellow Sea unmanned aerial vehicle(UAV) remote sensing(rs)
下载PDF
CrossFormer Embedding DeepLabv3+ for Remote Sensing Images Semantic Segmentation
7
作者 Qixiang Tong Zhipeng Zhu +2 位作者 Min Zhang Kerui Cao Haihua Xing 《Computers, Materials & Continua》 SCIE EI 2024年第4期1353-1375,共23页
High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the d... High-resolution remote sensing image segmentation is a challenging task. In urban remote sensing, the presenceof occlusions and shadows often results in blurred or invisible object boundaries, thereby increasing the difficultyof segmentation. In this paper, an improved network with a cross-region self-attention mechanism for multi-scalefeatures based onDeepLabv3+is designed to address the difficulties of small object segmentation and blurred targetedge segmentation. First,we use CrossFormer as the backbone feature extraction network to achieve the interactionbetween large- and small-scale features, and establish self-attention associations between features at both large andsmall scales to capture global contextual feature information. Next, an improved atrous spatial pyramid poolingmodule is introduced to establish multi-scale feature maps with large- and small-scale feature associations, andattention vectors are added in the channel direction to enable adaptive adjustment of multi-scale channel features.The proposed networkmodel is validated using the PotsdamandVaihingen datasets. The experimental results showthat, compared with existing techniques, the network model designed in this paper can extract and fuse multiscaleinformation, more clearly extract edge information and small-scale information, and segment boundariesmore smoothly. Experimental results on public datasets demonstrate the superiority of ourmethod compared withseveral state-of-the-art networks. 展开更多
关键词 Semantic segmentation remote sensing multiscale self-attention
下载PDF
Remote sensing of quality traits in cereal and arable production systems:A review
8
作者 Zhenhai Li Chengzhi Fan +8 位作者 Yu Zhao Xiuliang Jin Raffaele Casa Wenjiang Huang Xiaoyu Song Gerald Blasch Guijun Yang James Taylor Zhenhong Li 《The Crop Journal》 SCIE CSCD 2024年第1期45-57,共13页
Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and c... Cereal is an essential source of calories and protein for the global population.Accurately predicting cereal quality before harvest is highly desirable in order to optimise management for farmers,grading harvest and categorised storage for enterprises,future trading prices,and policy planning.The use of remote sensing data with extensive spatial coverage demonstrates some potential in predicting crop quality traits.Many studies have also proposed models and methods for predicting such traits based on multiplatform remote sensing data.In this paper,the key quality traits that are of interest to producers and consumers are introduced.The literature related to grain quality prediction was analyzed in detail,and a review was conducted on remote sensing platforms,commonly used methods,potential gaps,and future trends in crop quality prediction.This review recommends new research directions that go beyond the traditional methods and discusses grain quality retrieval and the associated challenges from the perspective of remote sensing data. 展开更多
关键词 remote sensing Quality traits Grain protein CEREAL
下载PDF
Determining the planting year of navel orange trees in mountainous and hilly areas of southern China:a remote sensing based method
9
作者 LEI Juncheng WANG Sha +1 位作者 WANG Yuandong LUO Wei 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3293-3305,共13页
Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,th... Remote sensing has demonstrated validity in determining the planting year of deciduous fruit trees;however,its effectiveness in ascertaining the planting year of evergreen fruit trees remains unverified.Furthermore,the sources of error associated with using remote sensing to determine the planting year of fruit trees remain unclear.This study investigates several cultivated sweet orange(Citrus sinensis)varieties,which are extensively cultivated throughout subtropical China.We analyzed Landsat time series data from 132 navel orange orchards in Gannan,covering the period from 1993 to 2021.For each orchard,Google Earth Engine was employed to extract three vegetation indices—Enhanced Vegetation Index(EVI),Normalized Difference Vegetation Index(NDVI),and Normalized Burn Ratio(NBR)—for each available date,thereby generating three distinct vegetation index time series.The planting year of navel orange trees was identified based on abrupt changes observed in these time series.The principal sources of error in determining the planting year were investigated using the Wilcoxon signed-rank test,Spearman's correlation analysis,and Kruskal-Wallis H test.Key findings include:(1)Following the planting of navel orange trees,EVI,NDVI,and NBR exhibited fluctuations and a gradual increase over time,peaking approximately 10 to 15 years later.(2)The vegetation index time series derived from Landsat imagery effectively determined the planting year of evergreen navel orange trees in orchards,even within highly fragmented landscapes.Among these indices,NDVI and NBR time series outperformed the EVI time series.Specifically,the average determination errors for EVI,NDVI,and NBR time series were 6.4,1.8,and 2.8 years,respectively.(3)Major sources of error included the methods used to construct the time series,the selection of vegetation indices,and the orchard management practices.Overall,this study provides a viable method for determining the planting year of evergreen navel orange trees in fragmented landscapes and offers insights into factors contributing to uncertainty in planting year determination. 展开更多
关键词 Time series remote sensing Google Earth Engine Gannan SUBTROPICS
下载PDF
Remote sensing of air pollution incorporating integrated-path differential-absorption and coherent-Doppler lidar
10
作者 Ze-hou Yang Yong Chen +5 位作者 Chun-li Chen Yong-ke Zhang Ji-hui Dong Tao Peng Xiao-feng Li Ding-fu Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期594-601,共8页
An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption l... An innovative complex lidar system deployed on an airborne rotorcraft platform for remote sensing of atmospheric pollution is proposed and demonstrated.The system incorporates integrated-path differential absorption lidar(DIAL) and coherent-doppler lidar(CDL) techniques using a dual tunable TEA CO_(2)laser in the 9—11 μm band and a 1.55 μm fiber laser.By combining the principles of differential absorption detection and pulsed coherent detection,the system enables agile and remote sensing of atmospheric pollution.Extensive static tests validate the system’s real-time detection capabilities,including the measurement of concentration-path-length product(CL),front distance,and path wind speed of air pollution plumes over long distances exceeding 4 km.Flight experiments is conducted with the helicopter.Scanning of the pollutant concentration and the wind field is carried out in an approximately 1 km slant range over scanning angle ranges from 45°to 65°,with a radial resolution of 30 m and10 s.The test results demonstrate the system’s ability to spatially map atmospheric pollution plumes and predict their motion and dispersion patterns,thereby ensuring the protection of public safety. 展开更多
关键词 Differential absorption LIDAR COHERENT Doppler lidar Remoting sensing Atmospheric pollution
下载PDF
Quantifying glacier surging and associated lake dynamics in Amu Darya river basin using UAV and remote sensing data
11
作者 SAFAROV Mustafo KANG Shichang +5 位作者 MURODOV Murodkhudzha BANERJEE Abhishek NAVRUZSHOEV Hofiz GULAYOZOV Majid FAZYLOV Ali VOSIDOV Firdavs 《Journal of Mountain Science》 SCIE CSCD 2024年第9期2967-2985,共19页
Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictab... Glaciers in the Pamir region are experiencing rapid melting and receding due to climate change,which has a significant implication for the Amu Darya river basin.Predominantly,surging glaciers,which undergo unpredictable advances,are potentially leading to the obstruction of high-altitude river channels and also glacial lake outburst floods.decrease of-703.5±30.0 m.There is a substantial increase in the number(from 19 to 75)and area(from 4889.7±0.6 m2 to 15345.5±0.6 m2)of RGS lakes along with supra-glacier ponds based on a comparison of ArcGIS base map in 2011 and high-resolution UAV data in 2023.For M glacier,number of lakes increased from 4 to 22 but the lake area declined from 10715.2±0.6 to 365.6±0.6 m2.It was noted that the largest lake in 2011 with an area of 10406.4±0.6 m2 at the southeastern portion of the glacier was not observed in 2023 due to outburst.Both the glaciers have substantially impacted the river flow(Abdukahor river)by obstructing a significant proportion of river channel in recent years and might cause outburst floods.These findings enhance the understanding of glacier dynamics and their impacts on the surrounding areas,emphasizing the urgent need for continued monitoring and appropriate management strategies,with a specific focus on surging glaciers and the associated risks. 展开更多
关键词 UAV remote sensing Climate change Glacier dynamics Google Earth Engine PAMIR
下载PDF
Untethered Micro/Nanorobots for Remote Sensing:Toward Intelligent Platform
12
作者 Qianqian Wang Shihao Yang Li Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期450-483,共34页
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and d... Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities.Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems,enabling in situ detection of substances that traditional sensing methods struggle to achieve.Over the past decade of development,significant research progress has been made in designing sensing strategies based on micro/nanorobots,employing various coordinated control and sensing approaches.This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots,robot behavior,microrobotic manipulation,and robot-environment interactions.Providing recent studies and relevant applications in remote sensing,we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments,translating lab research achievements into widespread real applications. 展开更多
关键词 Micro/nanorobot remote sensing Wireless control SELF-PROPULSION Actuation at small scales
下载PDF
Transformer-Based Cloud Detection Method for High-Resolution Remote Sensing Imagery
13
作者 Haotang Tan Song Sun +1 位作者 Tian Cheng Xiyuan Shu 《Computers, Materials & Continua》 SCIE EI 2024年第7期661-678,共18页
Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose ... Cloud detection from satellite and drone imagery is crucial for applications such as weather forecasting and environmentalmonitoring.Addressing the limitations of conventional convolutional neural networks,we propose an innovative transformer-based method.This method leverages transformers,which are adept at processing data sequences,to enhance cloud detection accuracy.Additionally,we introduce a Cyclic Refinement Architecture that improves the resolution and quality of feature extraction,thereby aiding in the retention of critical details often lost during cloud detection.Our extensive experimental validation shows that our approach significantly outperforms established models,excelling in high-resolution feature extraction and precise cloud segmentation.By integrating Positional Visual Transformers(PVT)with this architecture,our method advances high-resolution feature delineation and segmentation accuracy.Ultimately,our research offers a novel perspective for surmounting traditional challenges in cloud detection and contributes to the advancement of precise and dependable image analysis across various domains. 展开更多
关键词 CLOUD TRANSFORMER image segmentation remotely sensed imagery pyramid vision transformer
下载PDF
ConvNeXt-UperNet-Based Deep Learning Model for Road Extraction from High-Resolution Remote Sensing Images
14
作者 Jing Wang Chen Zhang Tianwen Lin 《Computers, Materials & Continua》 SCIE EI 2024年第8期1907-1925,共19页
When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in inco... When existing deep learning models are used for road extraction tasks from high-resolution images,they are easily affected by noise factors such as tree and building occlusion and complex backgrounds,resulting in incomplete road extraction and low accuracy.We propose the introduction of spatial and channel attention modules to the convolutional neural network ConvNeXt.Then,ConvNeXt is used as the backbone network,which cooperates with the perceptual analysis network UPerNet,retains the detection head of the semantic segmentation,and builds a new model ConvNeXt-UPerNet to suppress noise interference.Training on the open-source DeepGlobe and CHN6-CUG datasets and introducing the DiceLoss on the basis of CrossEntropyLoss solves the problem of positive and negative sample imbalance.Experimental results show that the new network model can achieve the following performance on the DeepGlobe dataset:79.40%for precision(Pre),97.93% for accuracy(Acc),69.28% for intersection over union(IoU),and 83.56% for mean intersection over union(MIoU).On the CHN6-CUG dataset,the model achieves the respective values of 78.17%for Pre,97.63%for Acc,65.4% for IoU,and 81.46% for MIoU.Compared with other network models,the fused ConvNeXt-UPerNet model can extract road information better when faced with the influence of noise contained in high-resolution remote sensing images.It also achieves multiscale image feature information with unified perception,ultimately improving the generalization ability of deep learning technology in extracting complex roads from high-resolution remote sensing images. 展开更多
关键词 Deep learning semantic segmentation remote sensing imagery road extraction
下载PDF
Probability-Enhanced Anchor-Free Detector for Remote-Sensing Object Detection
15
作者 Chengcheng Fan Zhiruo Fang 《Computers, Materials & Continua》 SCIE EI 2024年第6期4925-4943,共19页
Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often... Anchor-free object-detection methods achieve a significant advancement in field of computer vision,particularly in the realm of real-time inferences.However,in remote sensing object detection,anchor-free methods often lack of capability in separating the foreground and background.This paper proposes an anchor-free method named probability-enhanced anchor-free detector(ProEnDet)for remote sensing object detection.First,a weighted bidirectional feature pyramid is used for feature extraction.Second,we introduce probability enhancement to strengthen the classification of the object’s foreground and background.The detector uses the logarithm likelihood as the final score to improve the classification of the foreground and background of the object.ProEnDet is verified using the DIOR and NWPU-VHR-10 datasets.The experiment achieved mean average precisions of 61.4 and 69.0 on the DIOR dataset and NWPU-VHR-10 dataset,respectively.ProEnDet achieves a speed of 32.4 FPS on the DIOR dataset,which satisfies the real-time requirements for remote-sensing object detection. 展开更多
关键词 Object detection anchor-free detector PROBABILISTIC fully convolutional neural network remote sensing
下载PDF
Modeling urban redevelopment:A novel approach using time-series remote sensing data and machine learning
16
作者 Li Lin Liping Di +6 位作者 Chen Zhang Liying Guo Haoteng Zhao Didarul Islam Hui Li Ziao Liu Gavin Middleton 《Geography and Sustainability》 CSCD 2024年第2期211-219,共9页
Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and su... Accurate mapping and timely monitoring of urban redevelopment are pivotal for urban studies and decisionmakers to foster sustainable urban development.Traditional mapping methods heavily depend on field surveys and subjective questionnaires,yielding less objective,reliable,and timely data.Recent advancements in Geographic Information Systems(GIS)and remote-sensing technologies have improved the identification and mapping of urban redevelopment through quantitative analysis using satellite-based observations.Nonetheless,challenges persist,particularly concerning accuracy and significant temporal delays.This study introduces a novel approach to modeling urban redevelopment,leveraging machine learning algorithms and remote-sensing data.This methodology can facilitate the accurate and timely identification of urban redevelopment activities.The study’s machine learning model can analyze time-series remote-sensing data to identify spatio-temporal and spectral patterns related to urban redevelopment.The model is thoroughly evaluated,and the results indicate that it can accurately capture the time-series patterns of urban redevelopment.This research’s findings are useful for evaluating urban demographic and economic changes,informing policymaking and urban planning,and contributing to sustainable urban development.The model can also serve as a foundation for future research on early-stage urban redevelopment detection and evaluation of the causes and impacts of urban redevelopment. 展开更多
关键词 Urban redevelopment Urban sustainability remote sensing Time-series analysis Machine learning
下载PDF
Weakly Supervised Network with Scribble-Supervised and Edge-Mask for Road Extraction from High-Resolution Remote Sensing Images
17
作者 Supeng Yu Fen Huang Chengcheng Fan 《Computers, Materials & Continua》 SCIE EI 2024年第4期549-562,共14页
Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous human... Significant advancements have been achieved in road surface extraction based on high-resolution remote sensingimage processing. Most current methods rely on fully supervised learning, which necessitates enormous humaneffort to label the image. Within this field, other research endeavors utilize weakly supervised methods. Theseapproaches aim to reduce the expenses associated with annotation by leveraging sparsely annotated data, such asscribbles. This paper presents a novel technique called a weakly supervised network using scribble-supervised andedge-mask (WSSE-net). This network is a three-branch network architecture, whereby each branch is equippedwith a distinct decoder module dedicated to road extraction tasks. One of the branches is dedicated to generatingedge masks using edge detection algorithms and optimizing road edge details. The other two branches supervise themodel’s training by employing scribble labels and spreading scribble information throughout the image. To addressthe historical flaw that created pseudo-labels that are not updated with network training, we use mixup to blendprediction results dynamically and continually update new pseudo-labels to steer network training. Our solutiondemonstrates efficient operation by simultaneously considering both edge-mask aid and dynamic pseudo-labelsupport. The studies are conducted on three separate road datasets, which consist primarily of high-resolutionremote-sensing satellite photos and drone images. The experimental findings suggest that our methodologyperforms better than advanced scribble-supervised approaches and specific traditional fully supervised methods. 展开更多
关键词 Semantic segmentation road extraction weakly supervised learning scribble supervision remote sensing image
下载PDF
Experimental study on the variation of optical remote sensing imaging characteristics of internal solitary waves with wind speed
18
作者 Zhe CHANG Lina SUN +4 位作者 Tengfei LIU Meng ZHANG Keda LIANG Junmin MENG Jing WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第2期408-420,共13页
Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by opt... Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging. 展开更多
关键词 internal solitary wave(ISW) optical remote sensing wind speed characteristics of ISWs bands
下载PDF
Using remote sensing technology to monitor salt lake changes caused by climate change and melting glaciers:insights from Zabuye Salt Lake in Xizang 被引量:2
19
作者 Tingyue LIU Jingjing DAI +3 位作者 Yuanyi ZHAO Shufang TIAN Zhen NIE Chuanyong YE 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第4期1258-1276,共19页
Zabuye Salt Lake(ZSL)in Xizang is the only saline lake in the world with natural crystalline lithium carbonate.As it is an important lithium production base in China,any changes of this lake are concerning.Global clim... Zabuye Salt Lake(ZSL)in Xizang is the only saline lake in the world with natural crystalline lithium carbonate.As it is an important lithium production base in China,any changes of this lake are concerning.Global climate change(CC)has affected the hydrological conditions of glaciers,lakes,and ecosystems in the Tibetan Plateau(TP).With the aim of monitoring dynamic hydrological changes in ZSL and Lunggar Glaciers(LG)to identify factors governing lake changes,and to estimate the potential damage to grasslands and salt pans,Landsat remote sensing(RS)and meteorological data were used to do a series of experiments and analysis.Firstly,according to the spectral characteristics(SC),salt lake,glaciers,grasslands,and salt pans around the salt lake were extracted by band calculation(BC).Secondly,basin and water areas of the expanded lake were estimated using a shuttle radar topography mission(SRTM)digital elevation model(DEM).Thirdly,comprehensive analyses of lake and glacier area changes,and regional meteorological factors(annual average temperature,annual precipitation,and evaporation)were performed,and the results show that ZSL expanded at a rate of 5.28 km^(2)/a,it is likely to continue expanding.Expansion was closely related to the large-scale melting of a glacier caused by rising temperatures.Continued lake expansion(LE)will exert different effects on surrounding grasslands and salt pans,7.84 km^(2)of grassland and 2.7 km^(2)of salt pan will be submerged with every meter of water increase in the lake.Similar prediction methods was used to monitor other lakes on the TP.Mami Co,Selin Co,and Chaerhan salt lakes all expanded at different rates,and may potentially cause different levels of potential harm to surrounding grasslands and roads.Our study contributes to salt lake research and demonstrates the superiority of RS technology for monitoring saline lakes. 展开更多
关键词 Tibetan Plateau Zabuye Salt Lake climate change remote sensing lake expansion
下载PDF
Application of Remote Sensing and GIS in Mineral Alteration Mapping and Lineament Extraction Case of Oudiane Elkharoub (Requibat Shield, Northern of Mauritania)
20
作者 Ould Mahmoud Hdeid Yousra Morsli +6 位作者 Mohamed Raji Zouhir Baroudi Malika Adjour Khaled Cheikh Nebagha Zein El Arby Vetah Mohamed El Moktar Isselmou Brahim Vall 《Open Journal of Geology》 CAS 2024年第9期823-854,共32页
The integration of remotely sensed data allowed the successful characterization of the mineral alteration zones of the Oudiane Elkharoub area in the Northeastern part of Reguibat Shield using image transformation tech... The integration of remotely sensed data allowed the successful characterization of the mineral alteration zones of the Oudiane Elkharoub area in the Northeastern part of Reguibat Shield using image transformation techniques. As both chemical and geochemical analyses showed significant Au, Ag, Cu, Pb, Mn, Cr, Ni, Th and Y anomalies, it’s very interesting to apply the remote sensing and GIS in mineral resources mapping. The remote sensing is a direct adjunct to the field, lithologic and structural mapping, and more recently, GIS has played an important role in the study of mineralization areas. The integration of several evidential maps highlighted the plausible areas with high concentrations of chlorite, epidote, kaolinite, calcite, alunite, hematite, illite and sulfur among other key mineral alterations that reflect the intensity of hydrothermal effects and the probable sites of ore bodies. The methodological approach integrates geological information acquired from Aster and Landsat 8 OLI/TIRS (Operational Land Imager/Thermal InfraRed Sensor) images and a multi-criteria GIS analysis. The superimposition of various lineament and hydrothermal alteration maps and the consideration of precious and base metal indicators allowed the zoning of sites likely to contain mineral concentrations. Remote sensing becomes an important tool for locating mineral deposits in its own right, when the primary and secondary processes of mineralization result in the formation of spectral anomalies. Reconnaissance lithological mapping is usually the first step of mineral resource mapping. This is complimented with structural mapping, as mineral deposits usually occur along or adjacent to geologic structures, and alteration mapping, as mineral deposits are commonly associated with hydrothermal alteration of the surrounding rocks. Ground truthing and laboratory studies including XRD analysis were utilized to verify the results. 展开更多
关键词 remote sensing GIS ASTER Landsat 8 (OLI/TIrs) Structure Mineralization ALTERATION MINERAL LINEAMENT Reguibat Shield Oudiane Elkharoub
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部