Observing and analyzing surface images is critical for studying the interaction between plasma and irradiated plasma-facing materials.This paper presents a method for the automatic recognition of bubbles in transmissi...Observing and analyzing surface images is critical for studying the interaction between plasma and irradiated plasma-facing materials.This paper presents a method for the automatic recognition of bubbles in transmission electron microscope(TEM)images of W nanofibers using image processing techniques and convolutional neural network(CNN).We employ a three-stage approach consisting of Otsu,local-threshold,and watershed segmentation to extract bubbles from noisy images.To address over-segmentation,we propose a combination of area factor and radial pixel intensity scanning.A CNN is used to recognize bubbles,outperforming traditional neural network models such as Alex Net and Google Net with an accuracy of 97.1%and recall of 98.6%.Our method is tested on both clear and blurred TEM images,and demonstrates humanlike performance in recognizing bubbles.This work contributes to the development of quantitative image analysis in the field of plasma-material interactions,offering a scalable solution for analyzing material defects.Overall,this study's findings establish the potential for automatic defect recognition and its applications in the assessment of plasma-material interactions.This method can be employed in a variety of specialties,including plasma physics and materials science.展开更多
The frequent traffic jams at major intersections call for an effective management system. The paper suggests implementing a smart traffic controller using real-time image processing. The sequence of the camera is anal...The frequent traffic jams at major intersections call for an effective management system. The paper suggests implementing a smart traffic controller using real-time image processing. The sequence of the camera is analyzed using different edge detection algorithms and object counting methods. Previously they used matching method that means the camera will be installed along with traffic light. It will capture the image sequence. To set an image of an empty road as a reference image, the captured images are sequentially matched using image matching;but in my paper, we used filtering method, which filtered the image and released all waste objects and only showed the cars, and after it well showed the number of cars in image. My paper is software that takes a picture or video. It has been customized to be used in the future to control the traffic light sign by giving each sign sufficient time, depending on the number of cars on each direction.展开更多
A novel practical and universal method of mask-wearing detection has been proposed to prevent viral respiratory infections.The proposed method quickly and accurately detects mask and facial regions using welltrained Y...A novel practical and universal method of mask-wearing detection has been proposed to prevent viral respiratory infections.The proposed method quickly and accurately detects mask and facial regions using welltrained You Only Look Once(YOLO)detector,then applies image coordinates of the detected bounding box(bbox).First,the data that is used to train our model is collected under various circumstances such as light disturbances,distances,time variations,and different climate conditions.It also contains various mask types to detect in general and universal application of the model.To detect mask-wearing status,it is important to detect facial and mask region accurately and we created our own dataset by taking picture of images.Furthermore,the Convolutional Neural Network(CNN)model is trained with both our own dataset and open dataset to detect under heavy foot-traffic(Indoors).To make the model robust and reliable in various environment and situations,we collected various sample data in different distances.And through the experiment,we found out that there is a particular gradient according to the mask-wearing status.The proposed method searches the point where the distance between the gradient for each state and the coordinate information of the detected object is the minimum.Then it carry out the classification of mask-wearing status of detected object.Lastly,we defined and classified three different mask-wearing states according to the mask’s position(With mask,Wear a mask around chin and Without mask).The gradient according to the mask-wearing status,is analyzed through linear regression.The regression interpretation is based on coordinate information of mask-wearing status and the sample data collected in simulated environment that considering distances between objects and the camera in the World Coordinate System.Through the experiments,we found out that linear regression analysis is more suitable than logistic regression analysis for classification of people wearing masks in general-purpose environments.And the proposed method,through linear regression analysis,classifies in a very concise way than the others.展开更多
基金supported by the National Key R&D Program of China(No.2017YFE0300106)Dalian Science and Technology Star Project(No.2020RQ136)+1 种基金the Central Guidance on Local Science and Technology Development Fund of Liaoning Province(No.2022010055-JH6/100)the Fundamental Research Funds for the Central Universities(No.DUT21RC(3)066)。
文摘Observing and analyzing surface images is critical for studying the interaction between plasma and irradiated plasma-facing materials.This paper presents a method for the automatic recognition of bubbles in transmission electron microscope(TEM)images of W nanofibers using image processing techniques and convolutional neural network(CNN).We employ a three-stage approach consisting of Otsu,local-threshold,and watershed segmentation to extract bubbles from noisy images.To address over-segmentation,we propose a combination of area factor and radial pixel intensity scanning.A CNN is used to recognize bubbles,outperforming traditional neural network models such as Alex Net and Google Net with an accuracy of 97.1%and recall of 98.6%.Our method is tested on both clear and blurred TEM images,and demonstrates humanlike performance in recognizing bubbles.This work contributes to the development of quantitative image analysis in the field of plasma-material interactions,offering a scalable solution for analyzing material defects.Overall,this study's findings establish the potential for automatic defect recognition and its applications in the assessment of plasma-material interactions.This method can be employed in a variety of specialties,including plasma physics and materials science.
文摘The frequent traffic jams at major intersections call for an effective management system. The paper suggests implementing a smart traffic controller using real-time image processing. The sequence of the camera is analyzed using different edge detection algorithms and object counting methods. Previously they used matching method that means the camera will be installed along with traffic light. It will capture the image sequence. To set an image of an empty road as a reference image, the captured images are sequentially matched using image matching;but in my paper, we used filtering method, which filtered the image and released all waste objects and only showed the cars, and after it well showed the number of cars in image. My paper is software that takes a picture or video. It has been customized to be used in the future to control the traffic light sign by giving each sign sufficient time, depending on the number of cars on each direction.
基金This research was supported by a grant(2019-MOIS32-027)of Regional Specialized Disaster-Safety Research Support Program funded by the Ministry of Interior and Safety(MOIS,Korea)This work was supported by Institute of Information&communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.2021-0-01972).
文摘A novel practical and universal method of mask-wearing detection has been proposed to prevent viral respiratory infections.The proposed method quickly and accurately detects mask and facial regions using welltrained You Only Look Once(YOLO)detector,then applies image coordinates of the detected bounding box(bbox).First,the data that is used to train our model is collected under various circumstances such as light disturbances,distances,time variations,and different climate conditions.It also contains various mask types to detect in general and universal application of the model.To detect mask-wearing status,it is important to detect facial and mask region accurately and we created our own dataset by taking picture of images.Furthermore,the Convolutional Neural Network(CNN)model is trained with both our own dataset and open dataset to detect under heavy foot-traffic(Indoors).To make the model robust and reliable in various environment and situations,we collected various sample data in different distances.And through the experiment,we found out that there is a particular gradient according to the mask-wearing status.The proposed method searches the point where the distance between the gradient for each state and the coordinate information of the detected object is the minimum.Then it carry out the classification of mask-wearing status of detected object.Lastly,we defined and classified three different mask-wearing states according to the mask’s position(With mask,Wear a mask around chin and Without mask).The gradient according to the mask-wearing status,is analyzed through linear regression.The regression interpretation is based on coordinate information of mask-wearing status and the sample data collected in simulated environment that considering distances between objects and the camera in the World Coordinate System.Through the experiments,we found out that linear regression analysis is more suitable than logistic regression analysis for classification of people wearing masks in general-purpose environments.And the proposed method,through linear regression analysis,classifies in a very concise way than the others.