期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于递归函数调用的深度优先遍历分解RSA模算法 被引量:3
1
作者 周利荣 《电脑编程技巧与维护》 2014年第4期13-15,17,共4页
RSA公钥加密算法基于大整数分解的困难性,提出了基于递归函数调用的深度优先遍历算法分解RSA模,在分析大整数相乘和分解的性质的基础上实现深度优先遍历算法分解大整数,并进行改进以实现并行运算,成功分解RSA-22。
关键词 rsa模 递归调用 深度优先遍历
下载PDF
The RSA Cryptoprocessor Hardware Implementation Based on Modified Montgomery Algorithm 被引量:2
2
作者 陈波 王旭 戎蒙恬 《Journal of Shanghai Jiaotong university(Science)》 EI 2005年第2期107-111,共5页
RSA(Rivest-Shamir-Adleman)public-key cryptosystem is widely used in the information security area such as encryption and digital signature. Based on the modified Montgomery modular multiplication algorithm, a new arch... RSA(Rivest-Shamir-Adleman)public-key cryptosystem is widely used in the information security area such as encryption and digital signature. Based on the modified Montgomery modular multiplication algorithm, a new architecture using CSA(carry save adder)was presented to implement modular multiplication. Compared with the popular modular multiplication algorithms using two CSA, the presented algorithm uses only one CSA, so it can improve the time efficiency of RSA cryptoprocessor and save about half of hardware resources for modular multiplication. With the increase of encryption data size n, the clock cycles for the encryption procedure reduce in (T(n^2),) compared with the modular multiplication algorithms using two CSA. 展开更多
关键词 Montgomery algorithm modular multiplication modular exponentiation
下载PDF
A Note on Shor’s Quantum Algorithm 被引量:1
3
作者 曹正军 刘丽华 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第3期368-370,共3页
Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the al... Shor proposed a polynomial time algorithm for computing the order of one element in a multiplicative group using a quantum computer. Based on Miller’s randomization, he then gave a factorization algorithm. But the algorithm has two shortcomings, the order must be even and the output might be a trivial factor. Actually, these drawbacks can be overcome if the number is an RSA modulus. Applying the special structure of the RSA modulus, an algorithm is presented to overcome the two shortcomings. The new algorithm improves Shor’s algorithm for factoring RSA modulus. The cost of the factorization algorithm almost depends on the calculation of the order of 2 in the multiplication group. 展开更多
关键词 Shor's quantum algorithm rsa modulus order
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部