Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of gr...Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.展开更多
The fibroin solids (membrane and gel) were prepared from regenerated silk fibroin solution in different ways. The structure of the fibroin solids and its change during storage were studied. The results indicated that ...The fibroin solids (membrane and gel) were prepared from regenerated silk fibroin solution in different ways. The structure of the fibroin solids and its change during storage were studied. The results indicated that the structure of fibroin membrane air-dried at 30℃ or freeze dried at a freezing temperature of -20-4℃ was the coexistence of amorphous and silkⅠstructure. The amorphous region could partly be transformed into silkⅠstructure under room temperature and humidity. The structure of porous silk fibroin membrane was the coexistence of amorphous and small part of silkⅡ, if the aqueous fibroin was freeze dried within the temperature range of -80℃ to -20℃, and the amorphous partly transformed into silkⅠ during storage. The structure of fibroin gel naturally forming when kept at room temperature was coexistent of amorphous and silkⅡ. The content of Gly and Ala was high in the surface membrane of aqueous fibroin and its structure was mostly silkⅠ and silkⅡwith high crystallinity.展开更多
Electrospinning technique was used for the fabrication of poly( vinyl alcohol)( PVA) / regenerated silk fibroin( SF)composite nanofibers,loaded with ciprofloxacin HCl( CipH Cl) as a wound dressing.Electrospun PVA / SF...Electrospinning technique was used for the fabrication of poly( vinyl alcohol)( PVA) / regenerated silk fibroin( SF)composite nanofibers,loaded with ciprofloxacin HCl( CipH Cl) as a wound dressing.Electrospun PVA / SF / CipH Cl composite nanofibers were stabilized against dissolving in water by heating in an oven at155 ℃ for 5 min.Incorporation of CipH Cl into electrospun nanofibers was confirmed by SEM and FT-IR spectra.Further the mechanical properties test illustrated that the addition of CipH Cl enhanced the mechanical properties of PVA and PVA / SF nanofibers.The antibacterial activities against Escherichia coli( E.coli)( gram-negative) and Staphylococcus aureus( S.aureus)( gram-positive) organisms were evaluated by disk diffusion method;and results suggested that electrospun PVA / CipH Cl and PVA / SF /CipH Cl composite nanofibers showed a remarkable antibacterial activity.展开更多
Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods...Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2).展开更多
Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial...Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe- lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the trans- plant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial ceils combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.展开更多
Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However,...Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.展开更多
In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fib...In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility.展开更多
We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-...We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application.展开更多
After removal of the caries or diseased teeth,the alveolar ridge will undergo absorption and atrophy.When the amount of alveolar bone is insufficient,it will cause an inability to perform effective dental implant rest...After removal of the caries or diseased teeth,the alveolar ridge will undergo absorption and atrophy.When the amount of alveolar bone is insufficient,it will cause an inability to perform effective dental implant restoration.In order to control the absorption and promote the repair and regeneration of alveolar ridge,a method of implanting guided bone regeneration(GBR)membranes at the extraction site is often used.In this study,silk fibroin(SF)and poly-L-lactide lactone(PLCL)were used to prepare bilayered guided bone regeneration membranes,and its morphology,hydrophilicity,surface roughness and mechanical properties were studied.At the same time,the drug release behaviors and cell compatibility of the bilayered membranes were studied.The results showed that SF/PLCL bi-layered membranes had good mechanical properties and surface hydrophilicity,and the drug-loaded bi-layered membranes had good cell compatibility.The bilayered membranes fabricated in this study are of potential for applying in the oral health field to promote bone regeneration.展开更多
Traditionally,silkworm silk has been used to make high-quality textiles.Nevertheless,various wastes from silk-worm silk textiles that are no longer used are increasing.which is also causing considerable waste and cont...Traditionally,silkworm silk has been used to make high-quality textiles.Nevertheless,various wastes from silk-worm silk textiles that are no longer used are increasing.which is also causing considerable waste and contam-ination.This issue is causing widespread concern in countries that use more silk.Regenerated silk fibroin(RSF)fibers have been shown to be fragile and tender,which prohibits RSF from being widely used as a structural com-ponent.Therefore,enriching the function of silk and enhancing the RSF mechanial properties are important directions to expand the comprehensive utilization of silk products.In the present research,wet spinning was used to create a series of RSF/tungsten disulfide(WS_(2))nanoparticles(NPs)hybrid fiber having distinct WS_(2) nanoparticles concentrations.It was discovered that the temperature of hybrid fibers containing 0.8 wt%RSF/WS_(2) nanoparticles might climb from 20.4℃ to 85.6℃in 1 min and 108.3℃ in 10 min after being exposed to simulated sunlight for a period of one minute and ten minutes.It also had certain antibacterial activity and thermal stability.Fabrics created by hand mixing had outst anding photothermal characteristics under natural sunlight.Further-more,adding WS_(2) nanoparticles might increase the tensile properties of hybrid fibers,which could be caused by the reality that the blending of WS_(2) nanoparticles inhibited the self-assembly of sheets in RSF reaction mixture in a dosage dependent way,as evidenced by the fact that RSF/WSz nanoparticles hybrid fibers had lesser β-sheets material,crystalline nature,and arystalline size.The above performance makes the RSF/WS_(2) nanoparticles hybrid fbers promising candidates for application in photothermal fabrics as well as military dothing.展开更多
Objective:To investigate the effect of nano-patterning modification on the cell proliferation and adhesion in burn wound healing of regenerated silk fibroin membrane.Methods:A total of 60 healthy SD mice were randomly...Objective:To investigate the effect of nano-patterning modification on the cell proliferation and adhesion in burn wound healing of regenerated silk fibroin membrane.Methods:A total of 60 healthy SD mice were randomly divided into three groups:group A received treatment involving nano-patterning on the surface of regenerated silk fibroin membrane,group B received treatment with recombinant human epidermal growth factor gel,and group C received the same treatment with recombinant human epidermal growth factor gel,with 20 cases in each group.Wound healing,surface structure,protein adsorption,cell proliferation and adhesion were assessed at intervals of 5th,15th and 25th d after treatment.Results:The findings indicated that:(1)The duration and pace of wound healing in groups A and B surpassed those of group C,with group A exhibiting superior results compared to group B(P<0.05);(2)Histopathological analysis revealed a progressive increase in neovascularization and fibroblast count in wound tissue across the 5th,15th,and 25th days for all three groups,with group C exhibiting a higher count of neovascularization and fibroblasts in unhealed tissue compared to groups A and B.(3)The levels of basic calponin expression in group A and group B showed an increase on the 5th and 15th day,followed by stabilization on the 25th day.In group C,the expression of basic calponin was initially high on the 5th day,and then stabilized on the 15th and 25th day(P<0.05);(4)The expression of fibroblast proliferating cell nuclear antigen in the wound tissue of mice in all three groups peaked on the 15th day and subsequently declined.The expression of PCNA in group A and group B was higher than that in group C at each time point,with group A exhibiting higher levels than group B(P<0.05);(5)As wounds healed,there was a reduction in apoptotic cells within the wound tissues of mice across three groups,with group a exhibiting a lower count compared to groups B and C(P<0.05).Conclusion:Nanopatterning on the surface of regenerated silk fibroin membrane can enhance the biocompatibility of burn wound treatment and promote the proliferation and adhesion of reparative cells.展开更多
为进一步提高再生丝素蛋白(RSF)在生物组织工程中的应用潜力,通过同轴静电纺技术,以RSF溶液为壳层、血管内皮生长因子(VEGF)和胎牛血清为芯层,制备纳米纤维膜。然后通过扫描电子显微镜、透射电子显微镜、ELISA试剂盒等手段,对不同芯层...为进一步提高再生丝素蛋白(RSF)在生物组织工程中的应用潜力,通过同轴静电纺技术,以RSF溶液为壳层、血管内皮生长因子(VEGF)和胎牛血清为芯层,制备纳米纤维膜。然后通过扫描电子显微镜、透射电子显微镜、ELISA试剂盒等手段,对不同芯层流速下制备的纳米纤维膜的纤维形态和壳芯结构及VEGF释放性能进行对比分析。结果表明:在固定其他因素的情况下,随着芯层流速减小,纤维形态由扁平带状向圆柱形转变,芯层厚度减小,纤维直径下降,纤维的壳芯结构趋于稳定;当壳层的RSF溶液浓度为14 g/m L时,在壳层流速为0. 80 m L/h、芯层流速为0. 05 m L/h的条件下,纤维壳芯结构稳定,VEGF释放性能较优。展开更多
The electrical microenvironment plays an important role in bone repair.However,the underlying mechanism by which electrical stimulation(ES)promotes bone regeneration remains unclear,limiting the design of bone microen...The electrical microenvironment plays an important role in bone repair.However,the underlying mechanism by which electrical stimulation(ES)promotes bone regeneration remains unclear,limiting the design of bone microenvironment-specific electroactive materials.Herein,by simple co-incubation in aqueous suspensions at physiological temperatures,biocompatible regenerated silk fibroin(RSF)is found to assemble into nanofibrils with aβ-sheet structure on MXene nanosheets,which has been reported to inhibit the restacking and oxidation of MXene.An electroactive hydrogel based on RSF and bioencapsulated MXene is thus prepared to promote efficient bone regeneration.This MXene/RSF hydrogel also acts as a piezoresistive pressure transducer,which can potentially be utilized to monitor the electrophysiological microenvironment.RNA sequencing is performed to explore the underlying mechanisms,which can activate Ca^(2+)/CALM signaling in favor of the direct osteogenesis process.ES is found to facilitate indirect osteogenesis by promoting the polarization of M2 macrophages,as well as stimulating the neogenesis and migration of endotheliocytes.Consistent improvements in bone regeneration and angiogenesis are observed with MXene/RSF hydrogels under ES in vivo.Collectively,the MXene/RSF hydrogel provides a distinctive and promising strategy for promoting direct osteogenesis,regulating immune microenvironment and neovascularization under ES,leading to re-establish electrical microenvironment for bone regeneration.展开更多
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(ZK[2024]574)Anshun University PhD Fund Project(No.asxybsjj202302)+1 种基金the National Synchrotron Radiation Laboratory(NSRL,Hefei,China)(No.2021-HLS-PT-004163)Shanghai Synchrotron Radiation Facility(SSRF,Shanghai,China)(No.2018-NFPS-PT-002700).
文摘Silk is widely used in the production of high-quality textiles.At the same time,the amount of silk textiles no longer in use and discarded is increasing,resulting in significant waste and pollution.This issue is of great concern in many countries where silk is used.Hydrogen peroxide as a naturally occurring compound is an important indicator of detection in both biology and the environment.This study aims to develop a composite fiber with hydrogen peroxide-sensing properties using discarded silk materials.To achieve this goal,firstly,polydopamine(PDA)was used to encapsulate the ZnFe_(2)O_(4) NPs to achieve the improvement of dispersion,and then regenerated silk fibroin(RSF)and PDA@ZnFe_(2)O_(4)/RSF hybrid fibers are prepared by wet spinning.Research has shown that PDA@ZnFe_(2)O_(4)/RSF demonstrates exceptional sensitivity,selectivity,and stability in detecting hydrogen peroxide,while maintaining high mechanical strength.Furthermore,the complete hybridization of PDA@ZnFe_(2)O_(4) with silk fibroin not only results in the combination of the durability of silk fibroin and PDA@ZnFe_(2)O_(4)’s rigidity,ensuring a reliable service life,but also makes PDA@ZnFe_(2)O_(4)/RSF exhibit excellent catalytic activity and biocompatibility.Therefore,the composite fiber exhibits exceptional mechanical properties and reliable hydrogen peroxide sensing capabilities,making it a promising material for biological and medical applications.
文摘The fibroin solids (membrane and gel) were prepared from regenerated silk fibroin solution in different ways. The structure of the fibroin solids and its change during storage were studied. The results indicated that the structure of fibroin membrane air-dried at 30℃ or freeze dried at a freezing temperature of -20-4℃ was the coexistence of amorphous and silkⅠstructure. The amorphous region could partly be transformed into silkⅠstructure under room temperature and humidity. The structure of porous silk fibroin membrane was the coexistence of amorphous and small part of silkⅡ, if the aqueous fibroin was freeze dried within the temperature range of -80℃ to -20℃, and the amorphous partly transformed into silkⅠ during storage. The structure of fibroin gel naturally forming when kept at room temperature was coexistent of amorphous and silkⅡ. The content of Gly and Ala was high in the surface membrane of aqueous fibroin and its structure was mostly silkⅠ and silkⅡwith high crystallinity.
基金"111 Project" Biomedical Textile Materials Science and Technology,China(No.B07024)National Natural Science Foundations of China(Nos.31070871,31271035)+1 种基金Science and Technology Commission of Shanghai Municipality,China(No.11nm0506200)Ph.D.Programs Foundation of Ministry of Education of China(No.20130075110005)
文摘Electrospinning technique was used for the fabrication of poly( vinyl alcohol)( PVA) / regenerated silk fibroin( SF)composite nanofibers,loaded with ciprofloxacin HCl( CipH Cl) as a wound dressing.Electrospun PVA / SF / CipH Cl composite nanofibers were stabilized against dissolving in water by heating in an oven at155 ℃ for 5 min.Incorporation of CipH Cl into electrospun nanofibers was confirmed by SEM and FT-IR spectra.Further the mechanical properties test illustrated that the addition of CipH Cl enhanced the mechanical properties of PVA and PVA / SF nanofibers.The antibacterial activities against Escherichia coli( E.coli)( gram-negative) and Staphylococcus aureus( S.aureus)( gram-positive) organisms were evaluated by disk diffusion method;and results suggested that electrospun PVA / CipH Cl and PVA / SF /CipH Cl composite nanofibers showed a remarkable antibacterial activity.
基金supported by the National Natural Science Foundation of China,No.11672332(to XYC)the National Key Research and Development Plan of China,No.2016YFC1101500(to SZ)
文摘Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2).
基金supported by the Scientific Research Project Fund of Wuxi Municipal Health and Family Planning Commission,No.MS201402
文摘Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe- lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the trans- plant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial ceils combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells.
基金supported by the National Natural Science Foundation of China,No.81671823,81701835a grant from the National Key Research and Development Program of China,No.2016YFC1101603a grant from the Natural Science Research Program of Nantong of China,No.MS12016056
文摘Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering.
基金supported by the Social Development Foundation of Suzhou, No. SYS201034the Open Project Program of Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, No. KLET1005
文摘In this study, Schwann cells, at a density of 1 x 105 cells/well, were cultured on regenerated silk fibroin nanofibers (305 + 84 nm) prepared using the electrospinning method. Schwann cells cultured on the silk fibroin nanofibers appeared more ordered, their processes extended further, and they formed more extensive and complex interconnections. In addition, the silk fibroin nanofibers had no impact on the proliferation of Schwann cells or on the secretion of ciliary neurotrophic factor, brain-derived neurotrophic factor or nerve growth factor. These findings indicate that regenerated electrospun silk fibroin nanofibers can promote Schwann cell adhesion, growth and proliferation, and have excellent biocompatibility.
基金supported by the National Natural Science Foundation of China,No.81371687,81171457
文摘We have designed a novel nerve guidance conduit(NGC) made from silk fibroin and poly(lactic-co-glycolic acid) through electrospinning and weaving(ESP-NGCs). Several physical and biological properties of the ESP-NGCs were assessed in order to evaluate their biocompatibility. The physical properties, including thickness, tensile stiffness, infrared spectroscopy, porosity, and water absorption were determined in vitro. To assess the biological properties, Schwann cells were cultured in ESP-NGC extracts and were assessed by morphological observation, the MTT assay, and immunohistochemistry. In addition, ESP-NGCs were subcutaneously implanted in the backs of rabbits to evaluate their biocompatibility in vivo. The results showed that ESP-NGCs have high porosity, strong hydrophilicity, and strong tensile stiffness. Schwann cells cultured in the ESP-NGC extract fluids showed no significant differences compared to control cells in their morphology or viability. Histological evaluation of the ESP-NGCs implanted in vivo indicated a mild inflammatory reaction and high biocompatibility. Together, these data suggest that these novel ESP-NGCs are biocompatible, and may thus provide a reliable scaffold for peripheral nerve repair in clinical application.
基金Natural Science Foundation for Key Program of the Jiangsu Higher Education Institutions,China(No.19KJA610004)Natural Science Foundation of Jiangsu Province,China(No.BK20161254)+1 种基金China Postdoctoral Science Foundation(No.2019M651947)Mandatory Projects of Nantong Municipal Science and Technology Plan,China(No.JC2018004)
文摘After removal of the caries or diseased teeth,the alveolar ridge will undergo absorption and atrophy.When the amount of alveolar bone is insufficient,it will cause an inability to perform effective dental implant restoration.In order to control the absorption and promote the repair and regeneration of alveolar ridge,a method of implanting guided bone regeneration(GBR)membranes at the extraction site is often used.In this study,silk fibroin(SF)and poly-L-lactide lactone(PLCL)were used to prepare bilayered guided bone regeneration membranes,and its morphology,hydrophilicity,surface roughness and mechanical properties were studied.At the same time,the drug release behaviors and cell compatibility of the bilayered membranes were studied.The results showed that SF/PLCL bi-layered membranes had good mechanical properties and surface hydrophilicity,and the drug-loaded bi-layered membranes had good cell compatibility.The bilayered membranes fabricated in this study are of potential for applying in the oral health field to promote bone regeneration.
基金This research was funded by the Education Department of Guizhou Provincial Project(No.KY2016277,China)the Science and Technology Department of Guizhou Provincial Project(No.LH20157693,China)+1 种基金the Jiangsu Specially Appointed Professor Program(No.Sujiaoshi201517,China)the National Project of Risk Assessment for Quality and Safety of Special Agro-Products(No.GPFP201701003,China).
文摘Traditionally,silkworm silk has been used to make high-quality textiles.Nevertheless,various wastes from silk-worm silk textiles that are no longer used are increasing.which is also causing considerable waste and contam-ination.This issue is causing widespread concern in countries that use more silk.Regenerated silk fibroin(RSF)fibers have been shown to be fragile and tender,which prohibits RSF from being widely used as a structural com-ponent.Therefore,enriching the function of silk and enhancing the RSF mechanial properties are important directions to expand the comprehensive utilization of silk products.In the present research,wet spinning was used to create a series of RSF/tungsten disulfide(WS_(2))nanoparticles(NPs)hybrid fiber having distinct WS_(2) nanoparticles concentrations.It was discovered that the temperature of hybrid fibers containing 0.8 wt%RSF/WS_(2) nanoparticles might climb from 20.4℃ to 85.6℃in 1 min and 108.3℃ in 10 min after being exposed to simulated sunlight for a period of one minute and ten minutes.It also had certain antibacterial activity and thermal stability.Fabrics created by hand mixing had outst anding photothermal characteristics under natural sunlight.Further-more,adding WS_(2) nanoparticles might increase the tensile properties of hybrid fibers,which could be caused by the reality that the blending of WS_(2) nanoparticles inhibited the self-assembly of sheets in RSF reaction mixture in a dosage dependent way,as evidenced by the fact that RSF/WSz nanoparticles hybrid fibers had lesser β-sheets material,crystalline nature,and arystalline size.The above performance makes the RSF/WS_(2) nanoparticles hybrid fbers promising candidates for application in photothermal fabrics as well as military dothing.
文摘Objective:To investigate the effect of nano-patterning modification on the cell proliferation and adhesion in burn wound healing of regenerated silk fibroin membrane.Methods:A total of 60 healthy SD mice were randomly divided into three groups:group A received treatment involving nano-patterning on the surface of regenerated silk fibroin membrane,group B received treatment with recombinant human epidermal growth factor gel,and group C received the same treatment with recombinant human epidermal growth factor gel,with 20 cases in each group.Wound healing,surface structure,protein adsorption,cell proliferation and adhesion were assessed at intervals of 5th,15th and 25th d after treatment.Results:The findings indicated that:(1)The duration and pace of wound healing in groups A and B surpassed those of group C,with group A exhibiting superior results compared to group B(P<0.05);(2)Histopathological analysis revealed a progressive increase in neovascularization and fibroblast count in wound tissue across the 5th,15th,and 25th days for all three groups,with group C exhibiting a higher count of neovascularization and fibroblasts in unhealed tissue compared to groups A and B.(3)The levels of basic calponin expression in group A and group B showed an increase on the 5th and 15th day,followed by stabilization on the 25th day.In group C,the expression of basic calponin was initially high on the 5th day,and then stabilized on the 15th and 25th day(P<0.05);(4)The expression of fibroblast proliferating cell nuclear antigen in the wound tissue of mice in all three groups peaked on the 15th day and subsequently declined.The expression of PCNA in group A and group B was higher than that in group C at each time point,with group A exhibiting higher levels than group B(P<0.05);(5)As wounds healed,there was a reduction in apoptotic cells within the wound tissues of mice across three groups,with group a exhibiting a lower count compared to groups B and C(P<0.05).Conclusion:Nanopatterning on the surface of regenerated silk fibroin membrane can enhance the biocompatibility of burn wound treatment and promote the proliferation and adhesion of reparative cells.
文摘为进一步提高再生丝素蛋白(RSF)在生物组织工程中的应用潜力,通过同轴静电纺技术,以RSF溶液为壳层、血管内皮生长因子(VEGF)和胎牛血清为芯层,制备纳米纤维膜。然后通过扫描电子显微镜、透射电子显微镜、ELISA试剂盒等手段,对不同芯层流速下制备的纳米纤维膜的纤维形态和壳芯结构及VEGF释放性能进行对比分析。结果表明:在固定其他因素的情况下,随着芯层流速减小,纤维形态由扁平带状向圆柱形转变,芯层厚度减小,纤维直径下降,纤维的壳芯结构趋于稳定;当壳层的RSF溶液浓度为14 g/m L时,在壳层流速为0. 80 m L/h、芯层流速为0. 05 m L/h的条件下,纤维壳芯结构稳定,VEGF释放性能较优。
基金This work was supported by National Natural Science Foundation of China,China(No.82272457,81972508,82172738)“Technology Innovation Action Plan”of Science and Technology Commission of Shanghai Municipality,China(21S11902700)+3 种基金Natural Science Foundation of Shanghai,China(21ZR1412300)Shanghai Talent Development Fund,China(2020067)Shanghai“Rising Stars of Medical Talent”Youth Development Program,China(Youth Medical Talents-Specialist Program,[2020]087),Shanghai Sailing Program,China(No.19YF1406800)Xiamen Medical and Health Guidance Project,China(3502Z20214ZD1078).
文摘The electrical microenvironment plays an important role in bone repair.However,the underlying mechanism by which electrical stimulation(ES)promotes bone regeneration remains unclear,limiting the design of bone microenvironment-specific electroactive materials.Herein,by simple co-incubation in aqueous suspensions at physiological temperatures,biocompatible regenerated silk fibroin(RSF)is found to assemble into nanofibrils with aβ-sheet structure on MXene nanosheets,which has been reported to inhibit the restacking and oxidation of MXene.An electroactive hydrogel based on RSF and bioencapsulated MXene is thus prepared to promote efficient bone regeneration.This MXene/RSF hydrogel also acts as a piezoresistive pressure transducer,which can potentially be utilized to monitor the electrophysiological microenvironment.RNA sequencing is performed to explore the underlying mechanisms,which can activate Ca^(2+)/CALM signaling in favor of the direct osteogenesis process.ES is found to facilitate indirect osteogenesis by promoting the polarization of M2 macrophages,as well as stimulating the neogenesis and migration of endotheliocytes.Consistent improvements in bone regeneration and angiogenesis are observed with MXene/RSF hydrogels under ES in vivo.Collectively,the MXene/RSF hydrogel provides a distinctive and promising strategy for promoting direct osteogenesis,regulating immune microenvironment and neovascularization under ES,leading to re-establish electrical microenvironment for bone regeneration.