This study delves into biodiesel synthesis from non-edible oils and algae oil sources using Response Surface Methodology(RSM)and an Artificial Neural Network(ANN)model to optimize biodiesel yield.Blend of C.vulgaris a...This study delves into biodiesel synthesis from non-edible oils and algae oil sources using Response Surface Methodology(RSM)and an Artificial Neural Network(ANN)model to optimize biodiesel yield.Blend of C.vulgaris and Karanja oils is utilized,aiming to reduce free fatty acid content to 1%through single-step transesterification.Optimization reveals peak biodiesel yield conditions:1%catalyst quantity,91.47 min reaction time,56.86℃reaction temperature,and 8.46:1 methanol to oil molar ratio.The ANN model outperforms RSM in yield prediction accuracy.Environmental impact assessment yields an E-factor of 0.0251 at maximum yield,indicating responsible production with minimal waste.Economic analysis reveals significant cost savings:30%-50%reduction in raw material costs by using non-edible oils,10%-15%increase in production efficiency,20%reduction in catalyst costs,and 15%-20%savings in energy consumption.The optimized process reduces waste disposal costs by 10%-15%,enhancing overall economic viability.Overall,the widespread adoption of biodiesel offers economic,environmental,and social benefits to a diverse range of stakeholders,including farmers,producers,consumers,governments,environmental organizations,and the transportation industry.Collaboration among these stakeholders is essential for realizing the full potential of biodiesel as a sustainable energy solution.展开更多
为充分开发汉麻的应用价值并获得较柔软的棉型化汉麻织物,通过进一步优化选择性氧化汉麻织物制备工艺方案,在单因素方案和正交试验设计的基础上协同利用BBD试验和RSM分析法,以活泼率作为响应值,回归分析高碘酸钠用量、氧化时间、氧化温...为充分开发汉麻的应用价值并获得较柔软的棉型化汉麻织物,通过进一步优化选择性氧化汉麻织物制备工艺方案,在单因素方案和正交试验设计的基础上协同利用BBD试验和RSM分析法,以活泼率作为响应值,回归分析高碘酸钠用量、氧化时间、氧化温度各自变量因素及其交互作用影响。结果表明:正交设计和RSM法优化结果一致,柔软棉型化汉麻织物制备的最佳工艺为:高碘酸钠13 g L,氧化时间1.5 h,氧化温度50℃。优化结果合理可行,在此优化条件下,棉型化汉麻织物活泼率增大、强力损失小、亲水性变好。展开更多
The grinding and classification process is one of the key sub-processes in mineral processing, which influences the final process indexes significantly and determines energy and ball consumption of the whole plant. Th...The grinding and classification process is one of the key sub-processes in mineral processing, which influences the final process indexes significantly and determines energy and ball consumption of the whole plant. Therefore, optimal control of the process has been very important in practice. In order to stabilize the grinding index and improve grinding capacity in the process,a process model based on population balance model(PBM) is calibrated in this study. The correlation between the mill power and the operating variables in the grinding process is modelled by using the response surface method(RSM), which solves the problem where the traditional power modeling method relies on some unobservable mechanism-related parameters. On this basis, a multi-objective optimization model is established to maximize the useful power of the grinding circuit to improve the throughput of the grinding operation and improve the fraction of –0.074 mm particles in the hydrocyclone overflow to smooth the subsequent flotation operation. The elite non-dominated sorting genetic algorithm-II(NSGA-II) is then employed to solve the multi-objective optimization problem. Finally, subjective and objective weighting methods and integrated multi-attribute decision-making methods are used to select the optimal solution on the Pareto optimal solution set. The results demonstrate that the throughput of the mill and the fraction of –0.074 mm particles in the overflow of the cyclone are increased by 3.83 t/h and 2.53%, respectively.展开更多
To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexe...To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.展开更多
基金the financial support provided for this research project entitled“Enhancement of Cold Flow Properties of Waste Cooking Biodiesel and Diesel”under the File Number A/RD/RP-2/345 for the above publication.
文摘This study delves into biodiesel synthesis from non-edible oils and algae oil sources using Response Surface Methodology(RSM)and an Artificial Neural Network(ANN)model to optimize biodiesel yield.Blend of C.vulgaris and Karanja oils is utilized,aiming to reduce free fatty acid content to 1%through single-step transesterification.Optimization reveals peak biodiesel yield conditions:1%catalyst quantity,91.47 min reaction time,56.86℃reaction temperature,and 8.46:1 methanol to oil molar ratio.The ANN model outperforms RSM in yield prediction accuracy.Environmental impact assessment yields an E-factor of 0.0251 at maximum yield,indicating responsible production with minimal waste.Economic analysis reveals significant cost savings:30%-50%reduction in raw material costs by using non-edible oils,10%-15%increase in production efficiency,20%reduction in catalyst costs,and 15%-20%savings in energy consumption.The optimized process reduces waste disposal costs by 10%-15%,enhancing overall economic viability.Overall,the widespread adoption of biodiesel offers economic,environmental,and social benefits to a diverse range of stakeholders,including farmers,producers,consumers,governments,environmental organizations,and the transportation industry.Collaboration among these stakeholders is essential for realizing the full potential of biodiesel as a sustainable energy solution.
文摘为充分开发汉麻的应用价值并获得较柔软的棉型化汉麻织物,通过进一步优化选择性氧化汉麻织物制备工艺方案,在单因素方案和正交试验设计的基础上协同利用BBD试验和RSM分析法,以活泼率作为响应值,回归分析高碘酸钠用量、氧化时间、氧化温度各自变量因素及其交互作用影响。结果表明:正交设计和RSM法优化结果一致,柔软棉型化汉麻织物制备的最佳工艺为:高碘酸钠13 g L,氧化时间1.5 h,氧化温度50℃。优化结果合理可行,在此优化条件下,棉型化汉麻织物活泼率增大、强力损失小、亲水性变好。
基金supported in part by the National Natural Science Foundation of China (62073342)the National Key Research and Development Program of China (2018YFB1701100)。
文摘The grinding and classification process is one of the key sub-processes in mineral processing, which influences the final process indexes significantly and determines energy and ball consumption of the whole plant. Therefore, optimal control of the process has been very important in practice. In order to stabilize the grinding index and improve grinding capacity in the process,a process model based on population balance model(PBM) is calibrated in this study. The correlation between the mill power and the operating variables in the grinding process is modelled by using the response surface method(RSM), which solves the problem where the traditional power modeling method relies on some unobservable mechanism-related parameters. On this basis, a multi-objective optimization model is established to maximize the useful power of the grinding circuit to improve the throughput of the grinding operation and improve the fraction of –0.074 mm particles in the hydrocyclone overflow to smooth the subsequent flotation operation. The elite non-dominated sorting genetic algorithm-II(NSGA-II) is then employed to solve the multi-objective optimization problem. Finally, subjective and objective weighting methods and integrated multi-attribute decision-making methods are used to select the optimal solution on the Pareto optimal solution set. The results demonstrate that the throughput of the mill and the fraction of –0.074 mm particles in the overflow of the cyclone are increased by 3.83 t/h and 2.53%, respectively.
基金Supported by the National Natural Science Foundation of China(32072352)。
文摘To improve drying uniformity and anthocyanin content of the raspberry puree dried in a continuous microwave dryer,the effects of process parameters(microwave intensity,air velocity,and drying time)on evaluation indexes(average temperature,average moisture content,average retention rate of the total anthocyanin content,temperature contrast value,and moisture dispersion value)were investigated via the response surface method(RSM)and the artificial neural network(ANN)with genetic algorithm(GA).The results showed that the microwave intensity and drying time dominated the changes of evaluation indexes.Overall,the ANN model was superior to the RSM model with better estimation ability,and higher drying uniformity and anthocyanin retention rate were achieved for the ANN-GA model compared with RSM.The optimal parameters were microwave intensity of 5.53 W•g^(-1),air velocity of 1.22 m·s^(-1),and drying time of 5.85 min.This study might provide guidance for process optimization of microwave drying berry fruits.