目前对于时间差定位差(Time Difference of Arrival,TDOA)的算法中,存在着定位偏差大、时间接收存在偏差等问题,直接导致定位精度受到很大影响。在各项定位算法中,基于接收信号强度定位算法(Received Signal Strength Indication,RSSI)...目前对于时间差定位差(Time Difference of Arrival,TDOA)的算法中,存在着定位偏差大、时间接收存在偏差等问题,直接导致定位精度受到很大影响。在各项定位算法中,基于接收信号强度定位算法(Received Signal Strength Indication,RSSI),具有覆盖面积广、精度高的特点,因此提出采用RSSI算法筛选修正过后进行TDOA算法的分层融合算法,使得整体的定位精度得到进一步提升。此分层融合算法可以提高定位精度,尽可能地减小因外部环境变化导致的定位误差。通过仿真可以看出,和现有的融合算法比较,该分层融合算法的可行性和稳定性有一定提升。展开更多
由于障碍物的存在,矿井等定位场景中普遍存在非视距传播现象,引起定位信号的折射、反射、衍射和散射,导致测距误差增大,进而影响目标定位精度。分析了非视距传播对TOA(Time of Arrival,到达时间)、TDOA(Time Difference of Arrival,到...由于障碍物的存在,矿井等定位场景中普遍存在非视距传播现象,引起定位信号的折射、反射、衍射和散射,导致测距误差增大,进而影响目标定位精度。分析了非视距传播对TOA(Time of Arrival,到达时间)、TDOA(Time Difference of Arrival,到达时间差)、AOA(Angle of Arrival,到达角度)、RSSI(Received Signal Strength Indication,接收强度指示)等定位方法的影响,并从非视距传播的识别、非视距传播误差的抑制、非视距传播的利用及非视距场景下的定位方法设计4个方面对现有文献进行综述。对于非视距传播的识别,重点探讨了残差检验法、误差统计法、能量检测法、神经网络算法和几何关系法;对于非视距传播误差的抑制,主要分析了基于滤波的方法、基于半参数的方法、基于能量检测的方法及基于数据库的方法;对于非视距传播的利用,重点综述了提高定位系统鲁棒性及基于误差学习和匹配的方法;对于非视距场景下的目标定位方法设计,分为视距与非视距混合场景及纯非视距场景2种情况进行综述。探讨了目标定位中非视距传播研究的新方向:通过多种定位技术的融合提高目标定位精度;借助新兴技术提高非视距场景下的目标定位精度;通过与其他信息系统的交互引入额外信息,实现跨系统协同定位。展开更多
文摘目前对于时间差定位差(Time Difference of Arrival,TDOA)的算法中,存在着定位偏差大、时间接收存在偏差等问题,直接导致定位精度受到很大影响。在各项定位算法中,基于接收信号强度定位算法(Received Signal Strength Indication,RSSI),具有覆盖面积广、精度高的特点,因此提出采用RSSI算法筛选修正过后进行TDOA算法的分层融合算法,使得整体的定位精度得到进一步提升。此分层融合算法可以提高定位精度,尽可能地减小因外部环境变化导致的定位误差。通过仿真可以看出,和现有的融合算法比较,该分层融合算法的可行性和稳定性有一定提升。
文摘由于障碍物的存在,矿井等定位场景中普遍存在非视距传播现象,引起定位信号的折射、反射、衍射和散射,导致测距误差增大,进而影响目标定位精度。分析了非视距传播对TOA(Time of Arrival,到达时间)、TDOA(Time Difference of Arrival,到达时间差)、AOA(Angle of Arrival,到达角度)、RSSI(Received Signal Strength Indication,接收强度指示)等定位方法的影响,并从非视距传播的识别、非视距传播误差的抑制、非视距传播的利用及非视距场景下的定位方法设计4个方面对现有文献进行综述。对于非视距传播的识别,重点探讨了残差检验法、误差统计法、能量检测法、神经网络算法和几何关系法;对于非视距传播误差的抑制,主要分析了基于滤波的方法、基于半参数的方法、基于能量检测的方法及基于数据库的方法;对于非视距传播的利用,重点综述了提高定位系统鲁棒性及基于误差学习和匹配的方法;对于非视距场景下的目标定位方法设计,分为视距与非视距混合场景及纯非视距场景2种情况进行综述。探讨了目标定位中非视距传播研究的新方向:通过多种定位技术的融合提高目标定位精度;借助新兴技术提高非视距场景下的目标定位精度;通过与其他信息系统的交互引入额外信息,实现跨系统协同定位。