期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于RSTCNN的小麦叶片病害严重度估计
被引量:
7
1
作者
鲍文霞
林泽
+3 位作者
胡根生
梁栋
黄林生
杨先军
《农业机械学报》
EI
CAS
CSCD
北大核心
2021年第12期242-252,263,共12页
以小麦叶片条锈病和白粉病为研究对象,针对同类型病害的不同严重度之间的图像颜色及纹理特征差异较小,传统方法病害严重度估计准确率不高的问题,提出一种基于循环空间变换的卷积神经网络(Recurrent spatial transformer convolutional n...
以小麦叶片条锈病和白粉病为研究对象,针对同类型病害的不同严重度之间的图像颜色及纹理特征差异较小,传统方法病害严重度估计准确率不高的问题,提出一种基于循环空间变换的卷积神经网络(Recurrent spatial transformer convolutional neural network,RSTCNN)对小麦叶片病害进行严重度估计。RSTCNN包含3个尺度网络,并由区域检测子网络进行连接。每个尺度网络以VGG19作为基础网络以提取病害的特征,同时为了统一区域检测过程中前后特征图的维度,在全连接层前引入空间金字塔池化(Spatial pyramid pooling,SPP);区域检测子网络则采用空间变换(Spatial transformer,ST)有效提取尺度网络特征图中病害的注意力区域。小麦叶片病害图像通过每个尺度网络中卷积池化层得到的特征图,一方面可作为预测病害严重度类别概率的依据,另一方面通过ST进行注意力区域检测并将检测到的区域作为下一个尺度网络的输入,通过交替促进的方式对注意力区域检测和局部细粒度特征表达进行联合优化和递归学习,最后对不同尺度网络的输出特征进行融合再并入到全连接层和Softmax层进行分类,从而实现小麦叶片病害严重度的估计。本文对采集的患有条锈病和白粉病的小麦叶片图像结合数据增强方法构建病害数据集,实验验证了改进后的RSTCNN在3层尺度融合的网络对病害严重度估计准确率较佳,达到了95.8%。相较于基础分类网络模型,RSTCNN准确率提升了7~9个百分点,相较于传统的基于颜色和纹理特征的机器学习算法,RSTCNN准确率提升了9~20个百分点。结果表明,本文方法显著提高了小麦叶片病害严重度估计的准确率。
展开更多
关键词
小麦
叶片病害
严重度估计
循环空间变换卷积神经网络
下载PDF
职称材料
题名
基于RSTCNN的小麦叶片病害严重度估计
被引量:
7
1
作者
鲍文霞
林泽
胡根生
梁栋
黄林生
杨先军
机构
安徽大学农业生态大数据分析与应用技术国家地方联合工程研究中心
中国科学院合肥物质科学研究院
出处
《农业机械学报》
EI
CAS
CSCD
北大核心
2021年第12期242-252,263,共12页
基金
国家自然科学基金项目(61672032、41771463)
安徽省科技重大专项(16030701091)。
文摘
以小麦叶片条锈病和白粉病为研究对象,针对同类型病害的不同严重度之间的图像颜色及纹理特征差异较小,传统方法病害严重度估计准确率不高的问题,提出一种基于循环空间变换的卷积神经网络(Recurrent spatial transformer convolutional neural network,RSTCNN)对小麦叶片病害进行严重度估计。RSTCNN包含3个尺度网络,并由区域检测子网络进行连接。每个尺度网络以VGG19作为基础网络以提取病害的特征,同时为了统一区域检测过程中前后特征图的维度,在全连接层前引入空间金字塔池化(Spatial pyramid pooling,SPP);区域检测子网络则采用空间变换(Spatial transformer,ST)有效提取尺度网络特征图中病害的注意力区域。小麦叶片病害图像通过每个尺度网络中卷积池化层得到的特征图,一方面可作为预测病害严重度类别概率的依据,另一方面通过ST进行注意力区域检测并将检测到的区域作为下一个尺度网络的输入,通过交替促进的方式对注意力区域检测和局部细粒度特征表达进行联合优化和递归学习,最后对不同尺度网络的输出特征进行融合再并入到全连接层和Softmax层进行分类,从而实现小麦叶片病害严重度的估计。本文对采集的患有条锈病和白粉病的小麦叶片图像结合数据增强方法构建病害数据集,实验验证了改进后的RSTCNN在3层尺度融合的网络对病害严重度估计准确率较佳,达到了95.8%。相较于基础分类网络模型,RSTCNN准确率提升了7~9个百分点,相较于传统的基于颜色和纹理特征的机器学习算法,RSTCNN准确率提升了9~20个百分点。结果表明,本文方法显著提高了小麦叶片病害严重度估计的准确率。
关键词
小麦
叶片病害
严重度估计
循环空间变换卷积神经网络
Keywords
wheat
leaf disease
severity estimation
rstcnn
分类号
S435.121 [农业科学—农业昆虫与害虫防治]
TP391.41 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于RSTCNN的小麦叶片病害严重度估计
鲍文霞
林泽
胡根生
梁栋
黄林生
杨先军
《农业机械学报》
EI
CAS
CSCD
北大核心
2021
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部