In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m ...In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m × s matrices with entries from the finite ring Zq, generalized the classical Lee metric [Lee, C. Y.: Some properties of non-binary error correcting codes. IEEE Trans. Inform. Theory, IT-4, 77- 82 (1958)] and array RT-metric [Rosenbloom, M. Y., Tsfasman, M. A.: Codes for m-metric. Prob. Inf. Transm., 33, 45-52 (1997)] and named this pseudo-metric as the Generalized-Lee-RT-Pseudo-Metric (or the GLRTP-Metric). In this paper, we obtain some lower bounds for two-dimensional array codes correcting CT burst array errors [Jain, S.: CT bursts from classical to array coding. Discrete Math., 308-309, 1489-1499 (2008)] with weight constraints under the GLRTP-metric.展开更多
文摘In [Jain, S.: Array codes in the generalized-Lee-RT-pseudo-metric (the GLRTP-metric), to appear in Algebra Colloq.], Jain introduced a new pseudo-metric on the space Matm×s(Zq), the module space of all m × s matrices with entries from the finite ring Zq, generalized the classical Lee metric [Lee, C. Y.: Some properties of non-binary error correcting codes. IEEE Trans. Inform. Theory, IT-4, 77- 82 (1958)] and array RT-metric [Rosenbloom, M. Y., Tsfasman, M. A.: Codes for m-metric. Prob. Inf. Transm., 33, 45-52 (1997)] and named this pseudo-metric as the Generalized-Lee-RT-Pseudo-Metric (or the GLRTP-Metric). In this paper, we obtain some lower bounds for two-dimensional array codes correcting CT burst array errors [Jain, S.: CT bursts from classical to array coding. Discrete Math., 308-309, 1489-1499 (2008)] with weight constraints under the GLRTP-metric.